SpreadsheetLLM:微软对Excel编码的“摊膀伏”

--->更多内容,请移步“鲁班秘笈”!!<---

SpreadsheetLLM

Excel的特点是二维数据格式、灵活的布局和多样化的格式选项。微软最近引入了SpreadsheetLLM,开创了一种高效的编码方法,用于释放和优化LLMs在电子表格上的强大理解和推理能力。最初研究人员提出一种包含单元格地址、值和格式的普通序列化方法。但是这种方法受到LLMs 上下文长度的约束,为此微软推出了SheetCompressor(下图绿色部分),它是一种

### Spreadsheet LLM Implementation and Usage Spreadsheet applications have evolved beyond mere tools for numerical calculations to platforms supporting complex data manipulation tasks. Integrating a Language Model (LLM) into spreadsheets can significantly enhance functionality by enabling natural language processing capabilities directly within these environments. #### Integration Methods One method involves embedding an API that connects the spreadsheet application with cloud-based LLM services. This allows users to leverage powerful machine learning models without needing deep technical knowledge or local computational resources[^1]. For instance, Google Sheets offers integration through Apps Script which can interface with external APIs including those providing NLP functionalities. Similarly, Microsoft Excel supports Power Automate flows capable of invoking RESTful endpoints linked to advanced AI services. #### Practical Applications Incorporating such technology opens up numerous possibilities: - **Data Analysis**: Users could perform sophisticated analyses using plain English commands instead of writing formulas. - **Automation**: Routine operations like cleaning datasets or generating reports become simpler when driven by intuitive instructions rather than rigid scripting languages. - **Enhanced Accessibility**: Individuals unfamiliar with programming concepts but comfortable expressing ideas verbally benefit greatly from this paradigm shift towards more human-centric interfaces. ```python import requests def query_llm(prompt): url = "https://api.example.com/v1/models/llm:predict" headers = {"Authorization": "Bearer YOUR_API_KEY"} payload = { 'inputs': prompt, 'parameters': {'max_new_tokens': 50} } response = requests.post(url, json=payload, headers=headers) return response.json()['generated_text'] ``` This code snippet demonstrates how one might implement a function in Python to interact with an LLM via HTTP POST request, sending prompts as input and receiving text outputs suitable for use within spreadsheet cells.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值