[Educational Codeforces Round 93]1398

8 篇文章 0 订阅
3 篇文章 0 订阅



Educational Codeforces Round 93 (Rated for Div. 2)

A - Bad Triangle

题意

问是否存在三条边,无法组成三角形,如果不存在输出-1,存在输出这三条边的下标

分析

直接比较最小两条边的和与最大条边的关系

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + 5;

int a[maxn];

int main(){
    int T;
    scanf("%d", &T);
    while(T--) {
        int n;
        scanf("%d", &n);
        for(int i = 1; i <= n; ++i)
            scanf("%d", &a[i]);
        if(a[1] + a[2] <= a[n]) 
            printf("%d %d %d\n", 1, 2, n);
        else
            puts("-1");
    }
    return 0;
}


B - Substring Removal Game

题意

Alice 和 Bob 轮流取数,取的数满足 要么是连续的1,要么是连续的0
得分为每个人最终得到的1的个数
Alice和Bob都会尽量使自己的得分更大,问Alice可以得到的最大得分

分析

如果可以取,每个人取的应该都是当前存在的连续最多的1字段
直接计算连续的1的个数,排个序,从最大的开始隔一个取

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 100 + 5;

char s[maxn];
int a[maxn];

int main(){
    int T;
    scanf("%d", &T);
    while(T--) {
        scanf("%s", s + 1);
        int k = 0, n = strlen(s + 1) + 1;
        for(int i = 1, cnt = 0; i <= n; ++i) {
            if(s[i] == '1') {
                cnt += 1;
            }else{
                if(cnt) a[++k] = cnt;
                cnt = 0;
            }
        }
        int ans = 0;
        sort(a + 1, a + 1 + k);
        for(int i = k; i >= 1; i -= 2) ans += a[i];
        printf("%d\n", ans);
    }
    return 0;
}


C - Good Subarrays [思维][前缀和] ★★

题意

求满足 ∑ i = l r a i = r − l + 1 \sum_{i=l}^{r}a_i=r-l+1 i=lrai=rl+1 的区间个数

分析

这样的区间其实相当于平均区间中的每个位置值为 1 1 1
将每个数都 − 1 -1 1,就相当于找区间和为 0 0 0 区间个数
区间和为 0 0 0 就只要求前缀和个数一样的数

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 1e5 + 5;

char s[maxn];
map<int, int> vis;

int main(){
    int T;
    scanf("%d", &T);
    while(T--) {
        int n; vis.clear();
        scanf("%d%s", &n, s + 1);
        ll ans = 0; vis[0] = 1;
        for(int i = 1, sum = 0; i <= n; ++i) {
            sum += s[i] - '1';
            ans += vis[sum];
            vis[sum] += 1;
        }
        printf("%lld\n", ans);
    }
    return 0;
}


D - Colored Rectangles [dp] ★

题意

有三种边 R , G , B R,G,B R,G,B,矩形可以由任意两种边构成,比如 r i , g j r_i,g_j ri,gj 或者 r i , b k r_i,b_k ri,bk 或者 g j , b k g_j, b_k gj,bk
求最后组成的所有矩形面积和最大为多少

分析

感觉这题比上一题好想
可以对每种边分别先进行排序,将边比较大的排在前面
d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 表示 R R R 选到了 i i i G G G 选到了 j j j B B B 选到了 k k k,所可以得到的最大矩形面积和
对于 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 的转移有三种情况
d p [ i + 1 ] [ j + 1 ] [ k ] = d p [ i ] [ j ] [ k ] + R [ i + 1 ] ∗ G [ j + 1 ] dp[i+1][j+1][k] = dp[i][j][k] + R[i+1]*G[j+1] dp[i+1][j+1][k]=dp[i][j][k]+R[i+1]G[j+1]
d p [ i + 1 ] [ j ] [ k + 1 ] = d p [ i ] [ j ] [ k ] + R [ i + 1 ] ∗ B [ k + 1 ] dp[i+1][j][k+1] = dp[i][j][k] + R[i+1]*B[k+1] dp[i+1][j][k+1]=dp[i][j][k]+R[i+1]B[k+1]
d p [ i ] [ j + 1 ] [ k + 1 ] = d p [ i ] [ j ] [ k ] + R [ j + 1 ] ∗ B [ k + 1 ] dp[i][j+1][k+1] = dp[i][j][k] + R[j+1]*B[k+1] dp[i][j+1][k+1]=dp[i][j][k]+R[j+1]B[k+1]
即分别取 i + 1 , j + 1 i+1,j+1 i+1,j+1的, i + 1 , k + 1 i+1,k+1 i+1,k+1的和 j + 1 , k + 1 j+1,k+1 j+1,k+1的 所组成的矩形

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 200 + 5;

int a[3][maxn];
ll dp[maxn][maxn][maxn];

bool cmp(int x, int y) {
    return x > y;
}

int main(){
    int co[3];
    for(int i = 0; i < 3; ++i) scanf("%d", &co[i]);
    for(int i = 0; i < 3; ++i) {
        for(int j = 1; j <= co[i]; ++j)
            scanf("%d", &a[i][j]);
        sort(a[i] + 1, a[i] + 1 + co[i], cmp);
    }
    ll ans = 0;
    memset(dp, 0, sizeof(dp));
    for(int i = 0; i <= co[0]; ++i) {
        for(int j = 0; j <= co[1]; ++j) {
            for(int k = 0; k <= co[2]; ++k) {
                dp[i+1][j+1][k] = max(dp[i+1][j+1][k], dp[i][j][k] + a[0][i+1] * 1ll * a[1][j+1]);
                dp[i+1][j][k+1] = max(dp[i+1][j][k+1], dp[i][j][k] + a[0][i+1] * 1ll * a[2][k+1]);
                dp[i][j+1][k+1] = max(dp[i][j+1][k+1], dp[i][j][k] + a[1][j+1] * 1ll * a[2][k+1]);
            }
        }
    }
    for(int i = 0; i <= co[0]; ++i)
        for(int j = 0; j <= co[1]; ++j)
            for(int k = 0; k <= co[2]; ++k)
                ans = max(ans, dp[i][j][k]);
    printf("%lld\n", ans);
    return 0;
}


E - Two Types of Spells [权值线段树][思维] ★★★

参考博客
Codeforces1398 E. Two Types of Spells(权值线段树)

题意

有两种法术
0 x:若 x ≥ 0 x \ge 0 x0,则加入一个造成 x x x 点伤害的法术;若 x < 0 x<0 x<0,则删除一个造成 x x x 点伤害的 0 0 0 法术(这里造成的伤害是指没有经过加倍的)
1 x:若 x ≥ 0 x \ge 0 x0,则加入一个造成 x x x 点伤害的法术,且下一次的法术伤害变为两倍;若 x < 0 x<0 x<0,则删除一个造成 x x x 点伤害的 1 1 1 法术
保证删除是合法的,给出第 i i i 个法术后,这 1 → i 1 \rightarrow i 1i 个法术可以任意改变次序,问总伤害最大可以为多少

分析

加倍的法术要放在伤害最大的法术之前,这样可以使伤害尽可能大
但第一个加倍的法术是没办法被加倍的,所以第一个加倍的法术要放伤害最小的
如果有 n u m num num 个加倍的法术,则次序应该是
伤害最小的加倍 → \rightarrow 伤害最大 → \rightarrow 加倍 → \rightarrow 伤害次大 . . . ... ...
直到排完 n u m num num 个加倍法术
问题就可以转化为:

  1. 可以添加、删除
  2. 求后 n u m num num 大值的和( n u m num num 即加倍法术个数)
  3. 求伤害最小的加倍法术,即求最小值

这个问题就可以利用权值线段树来解决
由于要求伤害最小的加倍法术,所以加倍法术要另外建一棵权值线段树
另一棵权值线段树就用来存放所有的法术,这棵树可以用来查询后 n u m num num 大值的和
线段树就维护法术值为 v a l ∈ [ l , r ] val \in [l, r] val[l,r] 的个数 a [ l , r ] a[l, r] a[l,r],以及总和 s u m [ l , r ] sum[l, r] sum[l,r]
另外由于值较大且有负值,要进行离散化处理

代码

#include <bits/stdc++.h>
#define lson id<<1
#define rson id<<1|1
using namespace std;
typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 2e5 + 5;
const int maxm = 1e6 + 5;

int xx[maxn];
int op[maxn];
int x[maxn];
struct Tree{
    int a[maxm]; ll sum[maxm]; // 个数,和
    void init() {
        memset(a, 0, sizeof(a));
        memset(sum, 0, sizeof(sum));
    }
    void update(int id, int l, int r, int k, int val) {
        if(l == r) {
            a[id] += val, sum[id] += val * 1ll * xx[l];
            return ;
        }
        int mid = (l + r) >> 1;
        if(k <= mid) update(lson, l, mid, k, val);
        else update(rson, mid+1, r, k, val);
        a[id] = a[lson] + a[rson];
        sum[id] = sum[lson] + sum[rson];
    }
    ll ask(int id, int l, int r, int k) { // 后k大的和
        if(k <= 0)      return 0;
        if(a[id] <= k)  return sum[id];
        if(l == r)      return k * 1ll * xx[l];
        int mid = (l + r) >> 1;
        if(a[rson] >= k) {
            return ask(rson, mid+1, r, k);
        }else{
            return sum[rson] * 1ll + ask(lson, l, mid, k - a[rson]);
        }
    }
    int askmi(int id, int l, int r) { // 最小值是第几个
        if(l == r) return l;
        int mid = (l + r) >> 1;
        if(a[lson]) return askmi(lson, l, mid);
        else return askmi(rson, mid+1, r);
    }
}t1, t2; // t1是所有的, t2是双倍的

ll ans[maxn];
void solve(int n, int k) {
    int num = 0; // 个数
    for(int i = 1, f = 1; i <= n; ++i, f = 1) {
        if(x[i] < 0)    f = -1, x[i] = -x[i];
        if(op[i] == 0) {
            t1.update(1, 1, k, x[i], f);
        }else{
            num += f;
            t1.update(1, 1, k, x[i], f);
            t2.update(1, 1, k, x[i], f);
        }
        ans[i] = t1.sum[1];
        if(num == 0)    continue;
        int minn = t2.askmi(1, 1, k); // 双倍的最小值是第几个
        t1.update(1, 1, k, minn, -1);
        ans[i] += t1.ask(1, 1, k, num); // 后k大的和变成双倍的
        t1.update(1, 1, k, minn, 1);
    }
}

int main(){
    int n; 
    scanf("%d", &n);
    t1.init(), t2.init();
    for(int i = 1; i <= n; ++i) {
        scanf("%d%d", &op[i], &x[i]); xx[i] = abs(x[i]);
    }
    sort(xx + 1, xx + 1 + n);
    int k = unique(xx + 1, xx + 1 + n) - xx - 1;
    for(int i = 1, f = 1; i <= n; ++i, f = 1) {
        if(x[i] < 0) f = -1, x[i] = -x[i];
        x[i] = lower_bound(xx + 1, xx + 1 + k, x[i]) - xx;
        if(f < 0) x[i] = -x[i];
    }
    solve(n, k);
    for(int i = 1; i <= n; ++i) printf("%lld\n", ans[i]);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值