torch.mm() + torch.unsqueeeze()

① torch.mm()

torch.mm(mat1, mat2, out=None) → Tensor

torch.matmul(mat1, mat2, out=None) → Tensor

对矩阵mat1和mat2进行相乘。 如果mat1 是一个n×m张量,mat2 是一个 m×p 张量,将会输出一个 n×p 张量out。

参数 :

mat1 (Tensor) – 第一个相乘矩阵
mat2 (Tensor) – 第二个相乘矩阵
out (Tensor, optional) – 输出张量

② torch.unsqueeeze() 升维

torch.squeeeze() 降维

w_target = torch.FloatTensor([0.5,3,2.4])
print(w_target)
print(w_target.size())
tensor([0.5000, 3.0000, 2.4000])
torch.Size([3])

这里的w_target的size是[3] ,既不是 [1,3] 也不是 [3,1],说明它既不是行向量也不是列向量,只是一个数组。

这时可以用"unsqueeze()"对其进行操作,将其变成列向量

w_target = w_target.unsqueeze(1)
print(w_target)
print(w_target.size())
tensor([[0.5000],
        [3.0000],
        [2.4000]])
torch.Size([3, 1])

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值