① torch.mm()
torch.mm(mat1, mat2, out=None) → Tensor
torch.matmul(mat1, mat2, out=None) → Tensor
对矩阵mat1和mat2进行相乘。 如果mat1 是一个n×m张量,mat2 是一个 m×p 张量,将会输出一个 n×p 张量out。
参数 :
mat1 (Tensor) – 第一个相乘矩阵
mat2 (Tensor) – 第二个相乘矩阵
out (Tensor, optional) – 输出张量
② torch.unsqueeeze() 升维
torch.squeeeze() 降维
w_target = torch.FloatTensor([0.5,3,2.4])
print(w_target)
print(w_target.size())
tensor([0.5000, 3.0000, 2.4000])
torch.Size([3])
这里的w_target的size是[3] ,既不是 [1,3] 也不是 [3,1],说明它既不是行向量也不是列向量,只是一个数组。
这时可以用"unsqueeze()"对其进行操作,将其变成列向量
w_target = w_target.unsqueeze(1)
print(w_target)
print(w_target.size())
tensor([[0.5000],
[3.0000],
[2.4000]])
torch.Size([3, 1])