HDU1232–畅通工程–并查集
一、题目描述
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
Huge input, scanf is recommended.
二、解题思路
这个题最后要求需要建多少条路能把所有城镇都能连通,那么就可以先求一下连通分量,连通分量减一就是最终需要建的路。求连通分量的方法比较多,这道题可以用到并查集。通过输入的道路信息把两个城镇连接起来,然后遍历一遍经过实现路径压缩的同时创建一个数组并把每个祖先所在数组的位置赋为1,最后数组中1的个数就是连通分量的个数。
三、参考代码
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
int pre[1100],con[1000];
int Find(int x)
{//递归实现压缩路径
if(x==pre[x])
{
return x;
}
return pre[x]=Find(pre[x]);
}
/*
int Find(int x)
{//循环实现压缩路径
int r=x;
while(pre[r]!=r)
{
r=pre[r];
}
int t=x,j;
while(pre[t]!=r)
{
j=pre[t];
pre[t]=r;
t=j;
}
return r;
}
*/
int join(int x,int y)
{
int fx=Find(x),fy=Find(y);
if(fx!=fy)
{
pre[fy]=fx;
}
return fx;
}
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)&&n!=0)
{
int sum=0;
for(int i=1; i<=n; i++)
{
pre[i]=i;
}
memset(con,0,sizeof(con));
for(int i=0; i<m; i++)
{
int x,y;
scanf("%d%d",&x,&y);
join(x,y);
}
for(int i=1; i<=n; i++)
{
con[Find(i)]=1;
}
for(int i=1; i<=n; i++)
{
if(con[i]==1)
{
sum++;
}
}
cout<<sum-1<<endl;
}
}
四、总结
当使用并查集数据较多时,用循环实现压缩路径效率更加快。根据并查集的模板多练习就能够熟练应用。