题目:输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
例:{1,-2, 3, 10,-4, 7, 2,-5},和最大的子数组为{3,10,-4,7,2},因此输出为18。
分析:枚举出所有可能肯定不行,因为时间复杂度最快也是O(n^2),通常这种最直观的方法也不是最优解,面试官不会喜欢的。
解法一:分析数组规律,初始化和为0, 最大值为0x80000000, 从第一项开始累加,如果当前和小于等于0,则抛弃当前和,新的和为当前项;判断当前和与最大值的大小,更新最大值。
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int cur = 0;
int max = 0x80000000;
for(int i = 0; i < array.size(); ++i)
{
if(cur <= 0)
{
cur = array[i];
}
else{
cur += array[i];
}
if(cur > max)
max = cur;
}
return max;
}
};
解法二:动态规划
f(i)表示以第i个数字结尾的子数组最大和,那么我们要求max[f(i)],0 <= i < n;
f(i) = array[i] , i = 0或者f(i-1)<= 0;
f(i) = f(i-1) + array[i], i != 0且 f(i-1) > 0;
得到递归公式。但通常都会基于循环取编码,因为效率更高。
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int cur = 0;
int max = 0x80000000;
for(int i = 0; i < array.size(); ++i)
{
cur = f(array, i);
if(cur > max)
max = cur;
}
return max;
}
int f(const vector<int> &array, int i)
{
if(i == 0 || f(array, i - 1) <= 0)
return array[i];
else
return f(array, i-1) + array[i];
}
};