剑指Offer_面试题31_连续子数组的最大和

63 篇文章 1 订阅
40 篇文章 0 订阅

题目:输入一个整型数组,数组里有正数也有负数。数组中一个或连续的多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。

例:{1,-2, 3, 10,-4, 7, 2,-5},和最大的子数组为{3,10,-4,7,2},因此输出为18。


分析:枚举出所有可能肯定不行,因为时间复杂度最快也是O(n^2),通常这种最直观的方法也不是最优解,面试官不会喜欢的。

解法一:分析数组规律,初始化和为0, 最大值为0x80000000, 从第一项开始累加,如果当前和小于等于0,则抛弃当前和,新的和为当前项;判断当前和与最大值的大小,更新最大值。

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
        int cur = 0;
        int max = 0x80000000;
        for(int i = 0; i < array.size(); ++i)
        {
            if(cur <= 0)
            {
                cur = array[i];
            }
            else{
                cur += array[i];
            }
            if(cur > max)
                max = cur;
        }
        return max;
    }
};

解法二:动态规划

f(i)表示以第i个数字结尾的子数组最大和,那么我们要求max[f(i)],0 <= i < n;

f(i) = array[i] , i = 0或者f(i-1)<= 0;

f(i) = f(i-1) + array[i], i != 0且 f(i-1) > 0;

得到递归公式。但通常都会基于循环取编码,因为效率更高。

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
        int cur = 0;
        int max = 0x80000000;
        for(int i = 0; i < array.size(); ++i)
        {
            cur = f(array, i);
            if(cur > max)
                max = cur;
        }
        return max;
    }
    
    int f(const vector<int> &array, int i)
    {
        if(i == 0 || f(array, i - 1) <= 0)
            return array[i];
        else
            return f(array, i-1) + array[i];
    }
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值