第一步 :启动zookeeper bin ./zkServer.sh start
第二步:启动kafka 进入bin目录
./kafka-server-start.sh -daemon /home/hadoop/app/kafka_2.11-0.9.0.0/config/server.properties
Jps 之后,看见进程里面已经有一个kafka了
第三步:创建topic
kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic kafka_streaming_top
查看topic
./kafka-topics.sh --list --zookeeper localhost:2181
第四步:通过控制台测试topic是否能够正常的生产和消费信息
./kafka-console-producer.sh --broker-list localhost:9092 --topic kafka_streaming-topic
(生产者 生产到kafka_streaming_topic )
./kafka-console-consumer.sh --zookeeper localhost:2181 --topic kafka_streaming-topic
(消费者,zookeeper localhost:2181 进行消费 消费的是kafka_streaming_topic )
(创建topic和查看topic的时候,和zookeeper打交道 zooke 2181端口 kafka :9092端口)
第五步:开始使用 IDEA编程
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka.KafkaUtils
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* Spark Streaming对接Kafka的方式一
*/
object KafkaReceiverWordCount {
def main(args: Array[String]): Unit = {
if(args.length != 4) {
System.err.println("Usage: KafkaReceiverWordCount <zkQuorum> <group> <topics> <numThreads>")
}
val Array(zkQuorum, group, topics, numThreads) = args
val sparkConf = new SparkConf().setAppName("KafkaReceiverWordCount")
.setMaster("local[2]")
val ssc = new StreamingContext(sparkConf, Seconds(5))
val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
// TODO... Spark Streaming如何对接Kafka
val messages = KafkaUtils.createStream(ssc, zkQuorum, group,topicMap)
// TODO... 自己去测试为什么要取第二个
messages.map(_._2).flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).print()
ssc.start()
ssc.awaitTermination()
}
}