格的基本定义及性质
Lattices: Basic definitions and properties
这一节对应教材的 6.4.
这一节我们正式开始介绍格的内容。
格的定义
Definition. 令
v
1
,
…
,
v
n
∈
R
m
v_1,\dots,v_n \in \mathbb{R}^m
v1,…,vn∈Rm 是一组线性无关向量。由
v
1
,
…
,
v
n
v_1, \dots,v_n
v1,…,vn 生成(generate)的格(lattice)
L
L
L 是
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 的线性组合,其中系数取自
Z
\mathbb{Z}
Z,
L
=
{
a
1
v
1
+
a
2
v
2
+
⋯
+
a
n
v
n
:
a
1
,
a
2
,
…
,
a
n
∈
Z
}
.
L = \{a_1v_1 + a_2v_2 + \dots + a_nv_n:\ a_1,a_2,\dots,a_n \in \mathbb{Z}\}.
L={a1v1+a2v2+⋯+anvn: a1,a2,…,an∈Z}.
L
L
L 的基是任何一组能够生成
L
L
L 的线性无关的向量。任何两个基都有相同数量的元素。基中向量的个数称为格
L
L
L 的维数(dimension)。
这里也会看到其他的定义方式,如 Oded Regev 的课程笔记中,会将 m m m 称为格的维数(dimension),而 n n n 称为格的秩(rank)。当 n = m n=m n=m 时称格为满秩格(full rank lattice)。一般密码学中都是讨论满秩格。
但在本书以及在 Hermite’s Constant and Lattice Algorithms 的 Definition 6 中,都是把基中向量的个数称为维数。我个人倾向于认为 n n n 应该是维数,因为类比线性空间中维数的定义,维数是基中向量的个数,那么 L L L 的基中向量个数是 n n n,因此维数应该是 n n n。
n n n 可以称为秩,这个没问题,因为格也可以用矩阵表示:
L = { B x ∣ x ∈ Z n } . L=\{Bx \vert x\in \Z^n\}. L={Bx∣x∈Zn}.
其中 B = ( v 1 , … , v n ) B=(v_1,\dots,v_n) B=(v1,…,vn) 是基底组成的 m × n m\times n m×n 的矩阵。
根据矩阵秩的定义可以得到 秩=列秩=行秩=行/列向量的极大线性无关组中向量的个数= n n n。
当然这只是个小问题。。。
设
v
1
,
v
2
,
…
,
v
n
v_1,v_2,\dots,v_n
v1,v2,…,vn 是
V
V
V 的一个基底,
w
1
,
w
2
,
…
,
w
n
w_1,w_2,\dots,w_n
w1,w2,…,wn 是
V
V
V 中
n
n
n 个向量。则
w
j
w_j
wj 可以写为基的线性组合:
w
1
=
a
11
v
1
+
a
12
v
2
+
⋯
+
a
1
n
v
n
,
w
2
=
a
21
v
1
+
a
22
v
2
+
⋯
+
a
2
n
v
n
,
⋮
w
n
=
a
n
1
v
1
+
a
n
2
v
2
+
⋯
+
a
n
n
v
n
,
w_1 = a_{11}v_1 + a_{12}v_2+\dots+a_{1n}v_n,\\ w_2 = a_{21}v_1 + a_{22}v_2+\dots+a_{2n}v_n,\\ \vdots \\ w_n = a_{n1}v_1 + a_{n2}v_2+\dots+a_{nn}v_n,\\
w1=a11v1+a12v2+⋯+a1nvn,w2=a21v1+a22v2+⋯+a2nvn,⋮wn=an1v1+an2v2+⋯+annvn,
由于是格,这里的系数都是整数。
我们在线性空间中研究过基变换,我们来看一下格中两个基的关系。分别令
W
,
U
W, U
W,U 表示
w
j
w_j
wj 和
v
i
v_i
vi 两个列向量,
A
A
A 表示整系数矩阵:
A
=
(
a
11
a
12
⋯
a
1
n
a
21
a
22
⋯
a
2
n
⋮
⋮
⋱
⋮
a
n
1
a
n
2
⋯
a
n
n
)
A=\begin{pmatrix} {a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\ {a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n1}}&{a_{n2}}&{\cdots}&{a_{nn}}\\ \end{pmatrix}
A=
a11a21⋮an1a12a22⋮an2⋯⋯⋱⋯a1na2n⋮ann
则有
W
=
A
⋅
U
W = A\cdot U
W=A⋅U. 我们考虑利用
w
j
w_j
wj 来表示
v
i
v_i
vi, 此时只需要对
A
A
A 求逆便能得到
U
=
A
−
1
⋅
W
U = A^{-1}\cdot W
U=A−1⋅W. 在格中,线性组合的系数必须都是整数,所以
A
−
1
A^{-1}
A−1 中的元素也一定均为整数。注意到:
1
=
det
(
I
)
=
det
(
A
A
−
1
)
=
det
(
A
)
⋅
det
(
A
−
1
)
1 = \det(I) = \det(AA^{-1}) = \det(A)\cdot \det(A^{-1})
1=det(I)=det(AA−1)=det(A)⋅det(A−1)
而根据行列式的定义,整数矩阵的行列式一定是整数(行列式的定义为某行/列元素与其代数余子式的乘积再求和,只涉及到整数的加法和乘法,所以得到的结果一定是整数),于是
det
(
A
)
,
det
(
A
−
1
)
\det(A), \det(A^{-1})
det(A),det(A−1) 均为整数,从而只能得到
det
(
A
)
=
±
1
\det(A) = \pm 1
det(A)=±1. 这就证明了如下结果:
Proposition. 格 L L L 的任意两个基,其基变换矩阵中各元素均为整数,且行列式等于 ± 1 \pm 1 ±1.
为了计算方便,我们经常会考虑向量坐标取自整数的格。例如:
Z
n
=
{
(
x
1
,
x
2
,
…
,
x
n
)
:
x
1
,
x
2
,
…
,
x
n
∈
Z
}
\mathbb{Z}^n=\{(x_1,x_2,\dots,x_n):\ x_1,x_2,\dots,x_n \in \mathbb{Z}\}
Zn={(x1,x2,…,xn): x1,x2,…,xn∈Z}
为所有整数坐标的向量所构成的格。我们可以直观看一下
Z
2
\mathbb{Z}^2
Z2 上的格:
Definition. 一个整数格(integral or integer lattice)是指所有整数坐标的向量所构成的格。等价来说,一个整数格是加法群 Z m \mathbb{Z}^m Zm 的一个子群。
Remark. 如果
L
⊂
R
m
L\subset \mathbb{R}^m
L⊂Rm 是一个
n
n
n 维的格,则
L
L
L 的一个基可以被写为
n
n
n 行
m
m
m 列的矩阵
U
U
U, 设
v
i
=
(
u
i
1
,
…
,
u
i
m
)
v_i = (u_{i1}, \dots, u_{im})
vi=(ui1,…,uim) 即有:
U
=
(
v
1
,
…
,
v
n
)
T
=
(
u
11
u
12
⋯
u
1
m
u
21
u
22
⋯
u
2
m
⋮
⋮
⋱
⋮
u
n
1
u
n
2
⋯
u
n
m
)
U=(v_1, \dots,v_n)^T =\begin{pmatrix} {u_{11}}&{u_{12}}&{\cdots}&{u_{1m}}\\ {u_{21}}&{u_{22}}&{\cdots}&{u_{2m}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {u_{n1}}&{u_{n2}}&{\cdots}&{u_{nm}}\\ \end{pmatrix}
U=(v1,…,vn)T=
u11u21⋮un1u12u22⋮un2⋯⋯⋱⋯u1mu2m⋮unm
L
L
L 的一个新的基底可以通过左乘一个
n
×
n
n\times n
n×n 的矩阵
A
A
A 来得到。
A
A
A 中元素均为整数且行列式为
±
1
\pm1
±1 (这里其实就是重复了上面的那个命题).
格还有一种更为抽象的定义,其结合了几何与代数的理念。
Definition.
R
m
\mathbb{R}^m
Rm 的子集
L
L
L 是一个加法子群,如果其对于加法和减法封闭。我们称
L
L
L 是一个离散加法子群(discrete additive subgroup) 如果存在一个正数
ϵ
>
0
\epsilon > 0
ϵ>0, 对于所有的
v
∈
L
v \in L
v∈L 满足如下性质:
L
∩
{
w
∈
R
m
:
∥
v
−
w
∥
<
ϵ
}
=
{
v
}
.
L \cap\{w \in \mathbb{R}^m:\ \left\lVert v-w \right\rVert < \epsilon\}=\{v\}.
L∩{w∈Rm: ∥v−w∥<ϵ}={v}.
换句话说,如果在
L
L
L 中取任意的一个向量
v
v
v,并在其周围做一个半径为
ϵ
\epsilon
ϵ 的实心球,则球内除
v
v
v 之外没有任何其他
L
L
L 中的点。
Theorem. R m \mathbb{R}^m Rm 的一个子集是格当且仅当其是一个离散加法子群。
教材没有给出证明,以下证明为个人理解。
Proof. 充分性是容易证的,首先格 L L L 是 R m \R^m Rm 的加法子群。又因为格中存在最短向量,只需要令 ϵ = Shortest vector length \epsilon = \text{Shortest vector length} ϵ=Shortest vector length 即可。必要性的证明从直观上想,根据离散加法子群的定义 L L L 一定是由一些离散的点组成的,于是 L L L 应该是一个格。
基本域
Definition. 令
L
L
L 为
n
n
n 维 lattice,
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 是
L
L
L 的一个基。
L
L
L 在这组基下的基本域(fundamental domain/fundamental parallelepiped)是集合:
F
(
v
1
,
…
,
v
n
)
=
{
t
1
v
1
+
t
2
v
2
+
⋯
+
t
n
v
n
:
0
≤
t
i
<
1
}
\mathcal{F}(v_1,\dots,v_n)=\{t_1v_1+t_2v_2+\dots+t_nv_n:\ 0\leq t_i<1 \}
F(v1,…,vn)={t1v1+t2v2+⋯+tnvn: 0≤ti<1}
下图展示了一个2维格上的基本域。
F ( v 1 , … , v n ) \mathcal{F}(v_1,\dots,v_n) F(v1,…,vn) 还可以写成 R n / L \mathbb{R}^n/L Rn/L.
Proof.
R n / L = { v + L : v ∈ R n } = { ( α 1 v 1 + α 2 v 2 + ⋯ + α n v n ) + L : α i ∈ R } = { ( t 1 + a 1 ) v 1 + ⋯ + ( t n + a n ) v n + L : 0 ≤ t i < 1 , a i ∈ Z } = { ( t 1 v 1 + ⋯ + t n v n ) + ( a 1 v 1 + ⋯ + a n v n ) + L } = { ( t 1 v 1 + ⋯ + t n v n ) + L : 0 ≤ t i < 1 } = F \begin{aligned} \mathbb{R}^n/L &= \{v + L:\ v \in \mathbb{R}^n\}\\ &= \{(\alpha_1v_1+\alpha_2v_2+\dots+\alpha_nv_n)+L:\ \alpha_i \in \mathbb{R}\}\\ &=\{(t_1+a_1)v_1+\dots+(t_n+a_n)v_n+L:\ 0\leq t_i<1,\ a_i \in \mathbb{Z}\}\\ &= \{(t_1v_1+\dots+t_nv_n)+(a_1v_1+\dots+a_nv_n)+L \}\\ &=\{(t_1v_1+\dots+t_nv_n) + L:\ 0\leq t_i<1\}\\ &=\mathcal{F} \end{aligned} Rn/L={v+L: v∈Rn}={(α1v1+α2v2+⋯+αnvn)+L: αi∈R}={(t1+a1)v1+⋯+(tn+an)vn+L: 0≤ti<1, ai∈Z}={(t1v1+⋯+tnvn)+(a1v1+⋯+anvn)+L}={(t1v1+⋯+tnvn)+L: 0≤ti<1}=F
下面的命题说明了基本域在学习格中的重要性。
Proposition. 设
L
⊂
R
n
L\subset \mathbb{R}^n
L⊂Rn 是
n
n
n 维 lattice,令
F
\mathcal{F}
F 是
L
L
L 的基本域。则每一个向量
w
∈
R
n
w\in \mathbb{R}^n
w∈Rn 都可以被写成如下形式:
w
=
t
+
v
for a unique
t
∈
F
and a unique
v
∈
L
w = t+v\quad \text{for a unique}\ t \in \mathcal{F}\ \text{and a unique}\ v \in L
w=t+vfor a unique t∈F and a unique v∈L
等价来说,当
v
v
v 遍历格
L
L
L 中的向量时,平移后的基本域(the translated fundamental domains)的并集:
F
+
v
=
{
t
+
v
:
t
∈
F
}
\mathcal{F}+v = \{t+v:\ t \in \mathcal{F}\}
F+v={t+v: t∈F}
恰好覆盖整个
R
n
\mathbb{R}^n
Rn. 下图展示了经过
L
L
L 中的向量平移后的基本域
F
\mathcal{F}
F 恰好覆盖了整个
R
n
\mathbb{R}^n
Rn.
Proof. 令
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 是
L
L
L 的一个基,其生成的基本域为
F
\mathcal{F}
F. 则
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 在
R
n
\mathbb{R}^n
Rn 上线性无关,于是它们也是
R
n
\mathbb{R}^n
Rn 的一个基。因此,任意的
w
∈
R
n
w\in \mathbb{R}^n
w∈Rn 都能被写为形如:
w
=
α
1
v
1
+
α
2
v
2
+
⋯
+
α
n
v
n
for some
α
1
,
…
,
α
n
∈
R
.
w = \alpha_1v_1+\alpha_2v_2+\dots+\alpha_nv_n \quad \text{for some}\ \alpha_1, \dots, \alpha_n \in \mathbb{R}.
w=α1v1+α2v2+⋯+αnvnfor some α1,…,αn∈R.
我们将每个
α
i
\alpha_i
αi 稍作变形:
α
i
=
t
i
+
a
i
with
0
≤
t
i
<
1
and
a
i
∈
Z
\alpha_i = t_i+a_i \quad \text{with}\ 0\leq t_i <1\ \text{and}\ a_i \in \mathbb{Z}
αi=ti+aiwith 0≤ti<1 and ai∈Z
从而将变形后的
α
i
\alpha_i
αi 代入原式得到:
w
=
t
1
v
1
+
t
2
v
2
+
⋯
+
t
n
v
n
⏞
this is a vector
t
∈
F
+
a
1
v
1
+
a
2
v
2
+
⋯
+
a
n
v
n
⏞
this is a vector
v
∈
L
w = \overbrace{t_1v_1+t_2v_2+\dots+t_nv_n}^{\text{this is a vector}\ t \in \mathcal{F}}+\overbrace{a_1v_1+a_2v_2+\dots+a_nv_n}^{\text{this is a vector}\ v \in L}
w=t1v1+t2v2+⋯+tnvn
this is a vector t∈F+a1v1+a2v2+⋯+anvn
this is a vector v∈L
这便证得了 w w w 可以被表示为我们想要的形式。但证明还没结束,下面我们还需要证明 t t t 和 v v v 的唯一性。证明唯一性通用的方法就是假设有两个,最后推出它们是相等的。
我们假设
w
=
t
+
v
=
t
′
+
v
′
w = t+v=t^{'}+v^{'}
w=t+v=t′+v′ 是其两种表示形式,则有:
(
t
1
+
a
1
)
v
1
+
(
t
2
+
a
2
)
v
2
+
⋯
+
(
t
n
+
a
n
)
v
n
=
(
t
1
′
+
a
1
′
)
v
1
+
(
t
2
′
+
a
2
′
)
v
2
+
⋯
+
(
t
n
′
+
a
n
′
)
v
n
.
\begin{aligned} (t_1+a_1)v_1+(t_2+a_2)v_2+\dots+(t_n+a_n)v_n \\ =(t_1^{'}+a_1^{'})v_1+(t_2^{'}+a_2^{'})v_2+\dots+(t_n^{'}+a_n^{'})v_n. \end{aligned}
(t1+a1)v1+(t2+a2)v2+⋯+(tn+an)vn=(t1′+a1′)v1+(t2′+a2′)v2+⋯+(tn′+an′)vn.
由于
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 是相互独立的,所以有:
t
i
+
a
i
=
t
i
′
+
a
i
′
for all
i
=
1
,
2
,
…
,
n
.
t_i+a_i=t_i^{'}+a_i^{'}\quad \text{for all}\ i = 1,2,\dots,n.
ti+ai=ti′+ai′for all i=1,2,…,n.
因此
t
i
−
t
i
′
=
a
i
′
−
a
i
∈
Z
t_i-t_i^{'}=a_i^{'}-a_i \in \mathbb{Z}
ti−ti′=ai′−ai∈Z
是一个整数。但
t
i
t_i
ti 和
t
i
′
t_i^{'}
ti′ 大于等于0且严格小于1,于是要想让
t
i
−
t
i
′
t_i-t_i^{'}
ti−ti′ 是整数只能是
t
i
=
t
i
′
t_i=t_i^{'}
ti=ti′, 因此
t
=
t
′
t=t^{'}
t=t′. 并且:
v
=
w
−
t
=
w
−
t
′
=
v
′
v=w-t=w-t^{'}=v^{'}
v=w−t=w−t′=v′
这就完成了上述命题的完整证明。
基本域的体积(volume)是格中重要的一个不变量。
Definition. 设 L L L 是 n n n 维 lattice,令 F \mathcal{F} F 是 L L L 的基本域。则 F \mathcal{F} F 的 n n n 维体积称为是 L L L 的行列式(determinant) ,有时也被称为是协体积(covolume). 用 det ( L ) \det(L) det(L) 来表示。
注意到格 L L L 本身是没有体积的,因为它是一个可数点的集合。如果 L L L 是包含在 R n \mathbb{R}^n Rn 中且其维度为 n n n,那么 L L L 的协体积被定义为商群 R n / L \mathbb{R}^n/L Rn/L 的体积。
如果将基向量 v 1 , … , v n v_1,\dots,v_n v1,…,vn 看作是描述基本域(parallelepiped) F \mathcal{F} F 边长的给定长度的向量,那么对于给定长度的基向量,当这些向量两两正交时,所得到的体积(volume)是最大的。这导致了格的行列式有以下重要的上界:
Proposition (Hadamard’s Inequality). 令
L
L
L 是一个 lattice,取
L
L
L 任意的一组基
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn, 且
F
\mathcal{F}
F 是
L
L
L 的一个基本域,则有
det
(
L
)
=
Vol
(
F
)
≤
∥
v
1
∥
∥
v
2
∥
…
∥
v
n
∥
\det(L) = \text{Vol}(\mathcal{F}) \leq \left\lVert v_1 \right\rVert \left\lVert v_2 \right\rVert \dots \left\lVert v_n \right\rVert
det(L)=Vol(F)≤∥v1∥∥v2∥…∥vn∥
基底越接近于正交,则 Hadamard 不等式越趋向于等式。即上式右侧部分表示基底正交时求得的体积。
行列式可以看作是有向面积或体积的概念在一般的(即更高维)欧几里得空间中的推广。即矩阵的行列式可以解释为由其行(或列)向量张成的平行多面体的(定向的)体积。这里我们可以通过2维和3维的小例子来感受一下这个不等式。
2维以平行四边形和矩形为例。
显然,当边相互正交时,面积最大,即同边长情况下,矩形的面积要大于平行四边形的面积,且当平行四边形的边趋近于垂直时,其面积也趋近于等于 S 1 S_1 S1.
3维以平行六面体和长方体为例。
考虑体积公式体积等于底面积乘高: V = S ⋅ h V=S\cdot h V=S⋅h, 在对应棱长相等的情况下,长方体的体积要大于平行六面体的体积。
如果格 L ∈ R n L \in\mathbb{R}^n L∈Rn 中且 L L L 的维数为 n n n, 那么计算格 L 的行列式就相对容易。下一个命题描述了这个公式,这种情况也是我们最感兴趣的。
Proposition. 设
L
⊂
R
n
L \subset\mathbb{R}^n
L⊂Rn 是
n
n
n 维 lattice,令
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 是
L
L
L 的一组基,
F
=
F
(
v
1
,
…
,
v
n
)
\mathcal{F} = \mathcal{F}(v_1,\dots,v_n)
F=F(v1,…,vn) 是相对应的基本域。用坐标表示第
i
i
i 个基向量:
v
i
=
(
r
i
1
,
r
i
2
,
…
,
r
i
n
)
v_i = (r_{i1}, r_{i2},\dots, r_{in})
vi=(ri1,ri2,…,rin)
将向量
v
i
v_i
vi 的坐标作为矩阵的行向量,
F
=
F
(
v
1
,
…
,
v
n
)
=
(
r
11
r
12
⋯
r
1
n
r
21
r
22
⋯
r
2
n
⋮
⋮
⋱
⋮
r
n
1
r
n
2
⋯
r
n
n
)
.
F=F(v_1,\dots,v_n)=\begin{pmatrix} {r_{11}}&{r_{12}}&{\cdots}&{r_{1n}}\\ {r_{21}}&{r_{22}}&{\cdots}&{r_{2n}}\\ {\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {r_{n1}}&{r_{n2}}&{\cdots}&{r_{nn}}\\ \end{pmatrix}.
F=F(v1,…,vn)=
r11r21⋮rn1r12r22⋮rn2⋯⋯⋱⋯r1nr2n⋮rnn
.
则
F
\mathcal{F}
F 的体积由下面的公式给出:
Vol
(
F
(
v
1
,
…
,
v
n
)
)
=
∣
det
(
F
(
v
1
,
…
,
v
n
)
)
∣
.
\text{Vol}(\mathcal{F}(v_1,\dots,v_n))=\left\lvert \det(F(v_1,\dots,v_n))\right\rvert.
Vol(F(v1,…,vn))=∣det(F(v1,…,vn))∣.
对于一般情况,即非满秩格,其体积表示为 det L = det ( B B T ) \det{L} = \sqrt{\det(BB^{T})} detL=det(BBT).
Proof. 需要用到对多变量的积分。
Example. 考虑由如下三个线性无关向量生成的3维格
L
⊂
R
3
L\subset \mathbb{R}^3
L⊂R3:
v
1
=
(
2
,
1
,
3
)
,
v
2
=
(
1
,
2
,
0
)
,
v
3
=
(
2
,
−
3
,
−
5
)
.
v_1=(2,1,3),\ v_2 = (1,2,0),\ v_3=(2,-3,-5).
v1=(2,1,3), v2=(1,2,0), v3=(2,−3,−5).
则有:
F
(
v
1
,
v
2
,
v
3
)
=
(
2
1
3
1
2
0
2
−
3
−
5
)
.
F(v_1,v_2,v_3)=\begin{pmatrix} 2&1&3\\ 1&2&0\\ 2&-3&-5\\ \end{pmatrix}.
F(v1,v2,v3)=
21212−330−5
.
因此,格的体积为:
det
(
L
)
=
∣
det
(
F
)
∣
=
36
\det(L) = \left\lvert\det(F) \right\rvert = 36
det(L)=∣det(F)∣=36
Corollary. 设
L
⊂
R
n
L \subset\mathbb{R}^n
L⊂Rn 是
n
n
n 维 lattice,则
L
L
L 的每一个基本域都有相同的体积。因此
det
(
L
)
\det(L)
det(L) 是格
L
L
L 的不变量。
Proof. 令
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 和
w
1
,
…
,
w
n
w_1,\dots,w_n
w1,…,wn 分别生成了
L
L
L 的两个基本域,并令
F
(
v
1
,
…
,
v
n
)
F(v_1,\dots,v_n)
F(v1,…,vn) 和
F
(
w
1
,
…
,
w
n
)
F(w_1,\dots,w_n)
F(w1,…,wn) 是与之相关联的矩阵。根据前面的命题,两个基做转换只需对其中一个基左乘一个行列式为
±
1
\pm1
±1 的
n
×
n
n\times n
n×n 的矩阵
A
A
A 即可。
F
(
v
1
,
…
,
v
n
)
=
A
F
(
w
1
,
…
,
w
n
)
F(v_1,\dots,v_n)=AF(w_1,\dots,w_n)
F(v1,…,vn)=AF(w1,…,wn)
v
1
,
…
,
v
n
v_1,\dots,v_n
v1,…,vn 生成的基本域的体积为:
Vol
(
F
(
v
1
,
…
,
v
n
)
)
=
∣
det
(
F
(
v
1
,
…
,
v
n
)
)
∣
=
∣
det
(
A
F
(
w
1
,
…
,
w
n
)
)
∣
=
∣
det
(
A
)
∣
∣
det
(
F
(
w
1
,
…
,
w
n
)
)
∣
=
∣
det
(
F
(
w
1
,
…
,
w
n
)
)
∣
=
Vol
(
F
(
w
1
,
…
,
w
n
)
)
\begin{aligned} \text{Vol}(\mathcal{F}(v_1,\dots,v_n)) &=\left\lvert \det(F(v_1,\dots,v_n)) \right\rvert\\ &=\left\lvert \det(AF(w_1,\dots,w_n)) \right\rvert\\ &=\left\lvert \det(A) \right\rvert \left\lvert \det(F(w_1,\dots,w_n)) \right\rvert\\ &=\left\lvert \det(F(w_1,\dots,w_n)) \right\rvert\\ &=\text{Vol}(\mathcal{F}(w_1,\dots,w_n)) \end{aligned}
Vol(F(v1,…,vn))=∣det(F(v1,…,vn))∣=∣det(AF(w1,…,wn))∣=∣det(A)∣∣det(F(w1,…,wn))∣=∣det(F(w1,…,wn))∣=Vol(F(w1,…,wn))