一、项目背景与意义
随着城市人口的不断增长,城市生活垃圾量急剧增加。垃圾桶作为城市公共卫生设施,其状态直接关系到城市环境质量和居民的生活体验。尤其在节假日和高峰时段,垃圾桶易出现满溢现象,影响环境卫生,甚至滋生蚊蝇、传播病菌。因此,研发一套基于人工智能的垃圾桶满溢检测系统显得尤为重要。
传统的人工巡查方式费时费力,且存在漏检、延迟等问题。而基于深度学习的目标检测模型,结合摄像头和智能平台,可以实现实时监控与预警,提升城市管理智能化水平。
本文将基于YOLOv8目标检测算法,结合PyQt5开发图形化用户界面,构建一套完整的城市垃圾桶满溢检测系统,并推荐合适的数据集进行训练测试。
二、技术选型与整体架构
2.1 技术选型
模块 | 技术/工具 | 说明 |
---|---|---|
目标检测 | YOLOv8(Ultralytics) | 最新一代YOLO,精度高,速度快 |
UI界面 | PyQt5 | 轻量级Python GUI框架 |
图像处理< |