【bzoj2616】SPOJ PERIODNI 树形DP

给定一个N列的表格,每列的高度各不相同,但底部对齐,然后向表格中填入K个相同的数,填写时要求不能有两个数在同一列,或同一行,下图中b是错误的填写,a是正确的填写,因为两个a虽然在同一行,但它们中间的表格断开。 

输出所有填写方案数对1 000 000 007的余数。
输入:
第一行两个整数 N 和 K  (1 ≤ N ≤ 500, 1 ≤ K ≤ 500),表示表格的列数,和要填写的数的个数。
接下来一行N个数,表示每列的高度。高度不超过 1 000 000.
输出:
一个整数,方案总数对1000 000 007的余数。

注意:

对于 40% 的数据, 所有数值小于15.
对于70% 的数据,所有数值小于100.
样例:
输入:
3 3
2 1 3
输出:
2
输入:
4 1
1 2 3 4
输出:
10
输入:
5 2
2 3 1 2 4
输出:
43
输出:
3 2
999999 999999 999999
输出:

990979013


f[i,j]表示以i为根的树上放j个字符的方案总数。
g[i,j]表示以i为根的树左右儿子共填j个字符的方案总数

用 h[a,b,k] 表示底边长为a,高为b的矩形中放k个字符的方案总数。根据组合数学 有:

因为要取模 , 用逆元exgcd; 若 C 为B 的逆元,( A / B)% P = (A * C )% P;

#include<cstdio>
#include<iostream>
#include<algorithm>
#define LL long long
using namespace std;
const int N = 1001, M = 1000001;
const LL MOD = 1000000007;
int n, K, root, G, H[N], h[N], len[N], son[N][2];
LL A[M], g[N][N], f[N][N];
void exgcd(LL a, LL b, LL &g, LL &x, LL &y) {
	if(!b) { g = a; x = 1LL; y = 0LL; return; }
	exgcd(b, a%b, g, y, x); y -= a/b*x;
}
void built(int &k, int l, int r) {
	int s = r; 
	if(l > r) return;
	if(!k) k = ++G;
	for(int i = l; i < r; i++) 
		if(H[i] < H[s]) s = i;
	len[k] = r-l+1; h[k] = H[s];
	for(int i = l; i <= r; i++) 
		H[i] -= h[k];
	built(son[k][0], l, s-1);
	built(son[k][1], s+1, r);
}
LL calc(int a, int b, int k) {
	if(!k) return 1;
	if(a < k || b < k) return 0;
	LL fz = (A[a] * A[b]) % MOD;
	LL fm = (A[a-k] * A[b-k]) % MOD;
	LL y, x, g;
	fm = (fm * A[k]) % MOD;
	exgcd(fm, MOD, g, x, y);
	x = (x < 0) ? x += MOD : x;
	return (fz * x) % MOD;
}
void Dfs(int k) {
	g[k][0] = f[k][0] = 1;
	if(!k) return;
	Dfs(son[k][0]); Dfs(son[k][1]);
	for(int i = 1; i <= K; i++)
		for(int j = 0; j <= i; j++) 
			g[k][i] = (g[k][i]+f[son[k][0]][j]*f[son[k][1]][i-j]) % MOD;
	for(int i = 1; i <= K; i++)
		for(int j = 0; j <= i; j++)
			f[k][i] = (f[k][i]+g[k][j]*calc(len[k]-j, h[k], i-j)) % MOD;
}
int main() {
	scanf("%d%d\n", &n, &K); 
	A[0] = 1LL;
	for(int i = 1; i <= n; i++) 
		scanf("%d", &H[i]);
	for(int i = 1; i <= M; i++) 
		A[i] = ((LL)i * A[i-1]) % MOD;
	built(root, 1, n); 
	Dfs(root);
	printf("%lld\n", f[root][K]);
  	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值