扩展欧几里得定理 exgcd

解 ax + by = gcd(a,b);

gcd :  {     int gcd(int a, int b)  {  return b ? a : gcd(b, a%b);   }       }

ax+ by = 1 (gcd(a,b) = 1)

ax + by = 1     =>   bx + (a%b)y = 1    =>   bx + (a-(a/b)*b)y = 1   =>   ya + (x - (a/b)y)b  = 1

逆元 : ax = 1(mod p)    =>   ax - py  = 1 同理.

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int a, p;
void exgcd(int a, int b, int &g, int &x, int &y) {
	if(!b) { g = a; x = 1; y = 0; return ; }
	exgcd(b, a%b, g, y, x); y -= a/b*x;
}
int main() {
  	freopen("exgcd.in", "r", stdin);
 	freopen("exgcd.out", "w", stdout);
	scanf("%d%d\n", &a, &p);
	int x, y, g;
	exgcd(a, p, g, x, y);
	x = (x < 0) ? x += p : x;
	printf("%d\n", x);
  	fclose(stdin);
  	fclose(stdout);
  	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值