kmeans聚类的简介和代码(python)

  1. 一、k均值聚类的简单介绍:假设样本分为c类,每个类均存在一个中心点,通过随机生成c个中心点进行迭代,计算每个样本点到类中心的距离(可以自定义、常用的是欧式距离)  
  2.         将该样本点归入到最短距离所在的类,重新计算聚类中心,进行下次的重新划分样本,最终类中心不改变时,聚类完成  
  3.   
  4. 二、伪代码  

  1. 三、代码如下:

 #!/usr/bin/env python  
# coding=utf-8  
  
import numpy as np  
import random  
import matplotlib.pyplot as plt  
  
  
  
#data:numpy.array dataset  
#k the number of cluster  
def k_means(data,k):  
      
    #random generate cluster_center  
    sample_num=data.shape[0]  
    center_index=random.sample(range(sample_num),k)  
    cluster_cen=data[center_index,:]  
  
    is_change=1  
    cat=np.zeros(sample_num)  
      
  
    while is_change:  
        is_change=0  
  
        for i in range(sample_num):  
            min_distance=100000  
            min_index=0  
  
            for j in range(k):  
                sub_data=data[i,:]-cluster_cen[j,:]  
                distance=np.inner(sub_data,sub_data)  
                if distance<min_distance:  
                    min_distance=distance  
                    min_index=j+1  
  
            if cat[i]!=min_index:  
                is_change=1  
                cat[i]=min_index  
        for j in range(k):  
            cluster_cen[j]=np.mean(data[cat==(j+1)],axis=0)  
  
    return cat,cluster_cen  
  
  
if __name__=='__main__':  
  
    #generate data  
    cov=[[1,0],[0,1]]  
    mean1=[1,-1]  
    x1=np.random.multivariate_normal(mean1,cov,200)  
  
    mean2=[5.5,-4.5]  
    x2=np.random.multivariate_normal(mean2,cov,200)  
  
    mean3=[1,4]  
    x3=np.random.multivariate_normal(mean3,cov,200)  
  
    mean4=[6,4.5]  
    x4=np.random.multivariate_normal(mean4,cov,200)  
  
    mean5=[9,0.0]  
    x5=np.random.multivariate_normal(mean5,cov,200)  
      
    X=np.vstack((x1,x2,x3,x4,x5))  
      
    #data distribution  
    fig1=plt.figure(1)  
    p1=plt.scatter(x1[:,0],x1[:,1],marker='o',color='r',label='x1')  
    p2=plt.scatter(x2[:,0],x2[:,1],marker='+',color='m',label='x2')  
    p3=plt.scatter(x3[:,0],x3[:,1],marker='x',color='b',label='x3')  
    p4=plt.scatter(x4[:,0],x4[:,1],marker='*',color='g',label='x4')  
    p5=plt.scatter(x5[:,0],x4[:,1],marker='+',color='y',label='x5')  
    plt.title('original data')  
    plt.legend(loc='upper right')  
      
  
    cat,cluster_cen=k_means(X,5)  
      
  
    print 'the number of cluster 1:',sum(cat==1)  
    print 'the number of cluster 2:',sum(cat==2)  
    print 'the number of cluster 3:',sum(cat==3)  
    print 'the number of cluster 4:',sum(cat==4)  
    print 'the number of cluster 5:',sum(cat==5)  
  
      
      
    fig2=plt.figure(2)  
    for i,m,lo,label in zip(range(5),['o','+','x','*','+'],['r','m','b','g','y'],['x1','x2','x3','x4','x5']):  
  
        p=plt.scatter(X[cat==(i+1),0],X[cat==(i+1),1],marker=m,color=lo,label=label)  
    plt.legend(loc='upper right')  
    plt.title('the clustering result')  
    plt.show()

四、结果
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值