- 博客(258)
- 资源 (5)
- 收藏
- 关注
原创 终于有人将正态分布与Z值讲清楚了
视频链接:https://www.bilibili.com/video/BV1RB4y1K7wu/?(2)正态分布标准化。
2024-04-08 15:27:28 521
原创 tableau绘制雷达图
转化后:(部分用户使用tableau的【数据透视表】功能,但是也可线下直接处理成这样)在原数据的基础上添加对各指标进行区间的划分数据,也就是层级的划分。你要进行用雷达图比较的对象的各指标的数据。(2)添加【计算字段】(2) 处理后数据。
2024-02-01 15:46:52 904
原创 时间序列Prophet
讲解https://zhuanlan.zhihu.com/p/463183142案例:https://blog.csdn.net/anshuai_aw1/article/details/83412058案例:https://www.7b3.cn/chatgpt
2023-09-10 16:00:11 148
原创 求解神经网络做十字交叉验证k=10,这种方法到底是得到十个模型还是一个模型
求解神经网络做十字交叉验证k=10,这种方法到底是得到十个模型还是一个模型
2023-04-19 17:21:48 369
原创 XGboost常见特征处理及其他问题
1. Bagging 和Boosting区别 RF,GBDT,XGBoost,lightGBM都属于集成学习(EnsembleLearning),集成学习的目的是通过结合多个基学习器的预测结果来改善基本学习器的泛化能力和鲁棒性。(1)形式上 Bagging:基本学习器之间存在强依赖关系、必须串行生成的序列化方法; 例如:随机森林 bagging主要关注降低方差 Boosting:基本学习器间不存在强依赖关系、可同时
2022-05-30 11:04:23 3333 4
原创 百度迁徙数据爬取
1.迁入/迁出https://blog.csdn.net/Leaze932822995/article/details/1046394422.迁徙规模指数https://blog.csdn.net/Leaze932822995/article/details/1047315053.城内出行强度https://blog.csdn.net/Leaze932822995/article/details/1047319424.上班和休闲指数https://blog.csdn.net/Leaze93282
2022-04-11 00:38:31 1575
原创 python基础 - networkx 绘图总结
参考链接:https://blog.csdn.net/qq_19446965/article/details/106745837?spm=1001.2101.3001.6661.1&utm_medium=distribute.pc_relevant_t0.none-task-blog-2%7Edefault%7ECTRLIST%7ERate-1.pc_relevant_paycolumn_v3&depth_1-utm_source=distribute.pc_relevant_t0.non
2022-03-28 09:37:45 706
原创 SSR、SSE、SST、判定系数(可决系数、拟合优度)的计算公式
https://blog.csdn.net/S20144144/article/details/99672706
2022-02-23 14:36:02 3671
原创 数学建模方法—【03】拟合优度的计算(python计算)
https://blog.csdn.net/qq_43403025/article/details/108285275
2022-02-23 14:27:35 1206
原创 python读取DataFrame的某行或某列
import numpy as npimport pandas as pdfrom pandas import Sereis, DataFrameser = Series(np.arange(3.))data = DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('wxyz'))data['w'] #选择表格中的'w'列,使用类字典属性,返回的是Series类型data.w #选择表格中的'w
2022-02-22 10:16:44 13797 1
原创 Pandas中DataFrame关联操作(concat、append、merge、join)
参考链接:https://blog.csdn.net/ai_1046067944/article/details/86481276?spm=1001.2101.3001.6650.1&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-1.pc_relevant_aa&depth_1-utm_source=distribute.pc_relevant.none-t
2022-02-21 15:04:07 603
原创 报童模型相关文档
关于报童模型的几个较好的文档资料链接:http://www.doc88.com/p-9965934016156.htmlhttps://www.docin.com/p-2268357004.htmlhttps://wenku.baidu.com/view/7269fb91fad6195f302ba628?fr=TopList_highScoreList-80014,60272,100006,90018,80003,90002,80016,90016-pcview_toplistrec_highscor
2021-12-14 14:13:14 294
原创 sympy模块解指数方程
from sympy.abc import x, y, z, a, bfrom sympy import expprint sympy.solve(exp(-1 * x * 29) - 0.1, x)参考链接:https://blog.csdn.net/bitcarmanlee/article/details/100072157
2021-12-08 10:07:50 217
原创 python 处理常用的时间问题
如何将字符串的时间转转为时间格式的数据# 变成年月日时分秒XJ = pd.to_datetime(data_dd["新建时间"], format="%Y/%m/%d %H:%M:%S")def getMonth(time): # 获取月份 a = (time.dt.month.astype(float)).tolist() return adef getDay(time): # 获取日 a = (time.dt.day.asty.
2021-12-05 11:30:54 206
原创 pyhton根据城市名称获取省份名称
获取地理数据Fetching geodata with geopy在Feature Engineering的环节中经常会遇到地理数据的处理。地理数据通常包括地市\省份\经纬度等信息,这些不同level的特征可以被利用在模型训练中。但是通常我们能拿到的数据只是部分信息,如果想要增加特征维度,Python的geopy是一个获取geographic data很好的package。它内含地区的完整地址和经度纬度,并且支持包括中英文在内的多语言输入。以下是geopy的基本查询方式:!pip install
2021-11-03 11:09:32 4318
原创 python爬取各城市的油价
如何将汉字转换为拼音>>> from xpinyin import Pinyin>>> p = Pinyin()>>> # default splitter is `-`>>> p.get_pinyin(u"上海")'shang-hai'>>> # show tone marks>>> p.get_pinyin(u"上海", show_tone_marks=True)'shàng-.
2021-11-03 01:51:47 511
原创 比较好的几个运筹学文章—库存优化
https://blog.csdn.net/weixin_42644765/article/details/105145534https://zhuanlan.zhihu.com/p/91469734https://zhuanlan.zhihu.com/p/92421927https://zhuanlan.zhihu.com/p/77563000https://zhuanlan.zhihu.com/p/43275281https://zhuanlan.zhihu.com/p/394584501h
2021-10-25 11:06:43 754
原创 python dataframe 获得 列名columns 和行名称 index
dfname._stat_axis.values.tolist() # 行名称dfname.columns.values.tolist() # 列名称
2021-10-13 00:25:35 1251
原创 可视化网址
【可视化经验贴】https://zhuanlan.zhihu.com/p/55550480https://www.zhihu.com/question/19929609https://zhuanlan.zhihu.com/p/51695598https://www.zhihu.com/question/38931668https://www.zhihu.com/question/21664179https://www.zhihu.com/question/26620885https://www
2021-09-28 13:56:34 130
原创 python爬取历史的天气数据
import requestsimport demjson import csv# 构造2019全年的月份列表months = []for year in (2019,): for month in range(12): months.append("%d%02d"%(year, month+1))todo_urls = [ "http://tianqi.2345.com/t/wea_history/js/"+month+"/58457_"+month+".js
2021-09-15 18:37:57 286
Croston.xlsx
2020-12-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人