现在网络 MOOC 资源这么丰富,足不出户就可以学习到名校课程。
入门一个新领域需要两个方面的支持,一个是兴趣,另一个是需求。
入门 Deep learning 的过程,按照大牛建议的顺序是:
1. 周志华的《机器学习》
2. Andrew Ng 在 Coursera 的 Machine Learning 课程
3. Udacity 的 Deep Learning 课程 谷歌工程师讲的那个
4. 斯坦福 李飞飞 CS231n
这些看完就了解和理解大部分知识了,对于数学功底,大牛不建议去啃所有数学公式,因为对于 AI 或 Deep Learning 工程师来说,并不一定要像做研究那样完全理解公式。同时,数学可能是很多人对 Deep Learning 望而却步的一个原因。
总之,你要想清楚自己为了什么去学习 Deep Learning ,如果是面试,可能了解这些基础知识就够了;如果做工程,还要和分布式、 k8s 等等联系在一起;如果做研究,不读大量论文肯定是不行的。
入门一个新领域需要两个方面的支持,一个是兴趣,另一个是需求。
入门 Deep learning 的过程,按照大牛建议的顺序是:
1. 周志华的《机器学习》
2. Andrew Ng 在 Coursera 的 Machine Learning 课程
3. Udacity 的 Deep Learning 课程 谷歌工程师讲的那个
4. 斯坦福 李飞飞 CS231n
这些看完就了解和理解大部分知识了,对于数学功底,大牛不建议去啃所有数学公式,因为对于 AI 或 Deep Learning 工程师来说,并不一定要像做研究那样完全理解公式。同时,数学可能是很多人对 Deep Learning 望而却步的一个原因。
总之,你要想清楚自己为了什么去学习 Deep Learning ,如果是面试,可能了解这些基础知识就够了;如果做工程,还要和分布式、 k8s 等等联系在一起;如果做研究,不读大量论文肯定是不行的。