极简DeepLearning学习路线

现在网络 MOOC 资源这么丰富,足不出户就可以学习到名校课程。 

入门一个新领域需要两个方面的支持,一个是兴趣,另一个是需求。 

入门 Deep learning 的过程,按照大牛建议的顺序是: 

1. 周志华的《机器学习》 
2. Andrew Ng 在 Coursera 的 Machine Learning 课程 
3. Udacity 的 Deep Learning 课程 谷歌工程师讲的那个 
4. 斯坦福 李飞飞 CS231n 

这些看完就了解和理解大部分知识了,对于数学功底,大牛不建议去啃所有数学公式,因为对于 AI 或 Deep Learning 工程师来说,并不一定要像做研究那样完全理解公式。同时,数学可能是很多人对 Deep Learning 望而却步的一个原因。 

总之,你要想清楚自己为了什么去学习 Deep Learning ,如果是面试,可能了解这些基础知识就够了;如果做工程,还要和分布式、 k8s 等等联系在一起;如果做研究,不读大量论文肯定是不行的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值