自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(139)
  • 收藏
  • 关注

原创 大模型的发展

大模型在许多领域都有广泛应用,如新闻、影视、营销、娱乐、军事、教育、金融和医疗等,可以降低生产成本,提高作品质量,助力产品营销,增强决策能力,使教育方式更个性化、智能化,提高金融服务质量,赋能医疗机构诊疗全过程。此外,大模型被认为是未来人工智能应用中的关键基础设施,可带动上下游产业的革新,形成协同发展生态,对经济、社会和安全等领域的智能化升级中形成关键支撑。随着GPT-4的成功,语言大模型对多模态领域产生了重要影响,可以接受文本与图像组合的输入,更加符合人类的多渠道感知方式,应对更复杂的任务。

2024-11-20 18:06:36 598

原创 AI大模型与智算中心:构建未来智能社会的基石

AI大模型是通过深度学习算法和人工神经网络训练出的具有庞大规模参数的人工智能模型。这些模型使用大量多媒体数据资源作为输入,并通过复杂的数学运算和优化算法来完成大规模的训练,以学习和理解到输入数据的模式和特征。这些模式和特征最终通过大模型中庞大的参数进行表征,以获得与输入数据和模型设计相匹配的能力,最终来实现更复杂、更广泛的任务,如语音识别、自然语言处理、计算机视觉等。大模型的训练过程是根据大量的输入数据,通过算法调整模型中庞大的参数来优化模型性能。

2024-10-29 11:00:34 1145

原创 大模型时代已经来临!AI Agent 进入2.0时代,然而我发现我错了...

大模型发展实在是太快了,也太“卷”了,在ChatGPT发布大火之后,标志着人类开始已经进入大模型时代… 在这里时代了主要围绕大模型本身(参数,打榜)、多模态(视频、声音)、Agent(自动化)、提示词工程、RAG、微调等“生态”展开…转眼之间,这些东西已经“卷”了不知道多少轮了,随着荣耀CEO演示通过语音助手直接调用美团APP实现点咖啡的演示,到Claude 3.5 Sonnet-20241022的“computer use”再到近日智谱官宣的AutoGLM实现了“Phone Use”,从。

2024-10-29 10:56:21 1921

原创 《大型语言模型实战指南:应用实践与场景落地》一文详解大型语言模型的11种微调方法

本文从背景、来源、技术路线及性能等方面综述了11种在模型参数调优阶段进行的方法,其中前缀调优、提示调优和P-Tuning v2属于引入特定参数来减少算力消耗、提升训练速度;基于LoRA的各种方法的基本思想是添加新的旁路,对特定任务或特定数据进行微调。开源社区Hugging Face将这11种方法归纳为高效参数调优方法(Parameter-Efficient Fine-Tuning,PEFT)。PEFT方法能够在不微调所有模型参数的情况下,有效地让预训练语言模型适应各种下游应用。

2024-10-29 10:45:32 1196

原创 从 RAG 到 Self-RAG —— LLM 的知识增强

事实上这种 LLM 主动使用工具并进行判断的方式并非 Self-RAG 首创,在此之前的AutoGPTToolformerToolAlpaca和中早已有之,而且支持多种 API 调用。以针对 graph reasoning 任务设计少量 API Call 样本基于 ChatGPT 对 prompt 进行 augmentation使用现有 pre-train LLM 进行模型 fine-tuning基于 external graph toolkits 的 graph reasoning。

2024-10-28 10:04:16 510

原创 逆天20w赞!吴恩达+Open AI打造《大模型通关指南》

在这个系列教程中,《PromptEngineering for Developers》针对入门LLM开发者,深入浅出地介绍了如何构建Prompt并利用OpenAI提供的API实现包括总结、推断、转换等多种常用功能,是入门LLM开发的经典教程;《Building Systems with the ChatGPT API》则面向希望基于LLM开发应用程序的开发者,简洁有效地系统全面介绍了如何利用ChatGPT API打造完整的对话系统;

2024-10-28 09:51:49 868

原创 多模态智能体AI开启新浪潮!李飞飞等14位斯坦福微软大牛等撰写 80页《AGENT AI: 综述多模态交互的前沿展望》

随着大型语言模型(LLMs)和视觉-语言模型(VLMs)的出现,多个MAA系统已在从基础研究到应用的领域中被提出。虽然这些研究领域通过与每个领域的传统技术(例如,视觉问答和视觉-语言导航)的集成而迅速发展,但它们共有的兴趣包括数据收集、基准测试和伦理观点。在本文中,我们专注于MAA的一些代表性研究领域,即多模态性、游戏(VR/AR/MR)、机器人学和医疗保健,并旨在提供这些领域中讨论的共同关注点的全面知识。因此,我们期望学习MAA的基础知识,并获得进一步推进其研究的洞察。

2024-10-28 09:47:04 1755

原创 LLM洗数据:数据或许比算法更重要?大模型剪枝中的校准数据

在本文中,我们强调了校准数据在LLM训练后剪枝中发挥的关键作用。通过系统的探索,我们证明了与原始训练数据相似的校准数据可以获得更好的剪枝性能。为了解决实际场景中难以获取的训练数据的挑战,我们提出了一种自生成的合成校准数据策略,该策略可以有效地为LLM构造合适的校准数据。实验结果表明,我们的方法显著优于现有的常用校准数据。我们坚信,校准数据作为训练后剪枝的重要组成部分,仍具有进一步研究的巨大潜力。

2024-10-26 10:15:57 1103

原创 大语言模型的前世今生:万字长文完整梳理所有里程碑式大语言模型(LLMs)

作者:APlayBoy 编辑:AI生成未来链接:https://zhuanlan.zhihu.com/p/691719636所有资料 ⚡️ ,朋友们如果有需要全套 《》,本篇博客全面汇总了大型语言模型(LLMs)。从早期的预训练神经语言模型开始,探讨了它们的起源和发展。重点讨论了Transformer架构及其三个主要分类:仅编码器PLMs、仅解码器PLM和编码器-解码器PLM。接着,文章聚焦于GPT、LLaMA和PaLM这三大LLM家族,阐述了它们的特点和对语言模型领域的贡献。

2024-10-26 10:11:25 1181

原创 2024年从零开始,大模型训练教程

3.指令类型应该是多样化的,包括各种类型的任务,类别种类例如:brainstorming,open QA,closed QA,rewrite,extract,generation,classification,chat,summarization。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。如果你能在15天内完成所有的任务,那你堪称天才。

2024-10-26 10:00:02 1171

原创 轻量级Transformer在语义分割中的大显身手:SSformer

本文提出了SSformer,这是一种轻量级的Transformer模型,用于语义分割。本文引入了一个简单的MLP解码器,它带来了很少的复杂性和参数增加。SSformer利用了Swin Transformer的分层多尺度架构,可以从预训练的Swin Transformer中进行微调。实验结果证明了其具有竞争力的性能和低时间复杂度的特点。本文相信其先进的特性可以使语义分割框架更容易应用于低计算能力的计算机和嵌入式设备。本文的源代码和模型在GitHub上公开可用。

2024-10-26 09:51:54 1706

原创 以翻译 Kubernetes 文档为例,探索 AI 模型 Fine-Tuning 微调

在这次基于 Kubernetes 文档的翻译实验中,我探索了分别使用特定领域模型和LLM进行的过程,并通过LoRA技术有效地提升了的性能。除了LoRA之外,还有AdapterQLoRADoRA等等,它们都属于PEFT)的研究范畴。

2024-10-25 10:29:03 948

原创 大模型落地,要追求极致的务实主义

能够像人类一样操作电脑。”这一堪称革命性的新技能来自10月23日Anthropic最新推出的升级版Claude 3.5 Sonnet模型,据介绍该模型不仅各项性能指标上取得显著提升,并在多项测评中超过OpenAI的GPT-4o、谷歌的Gemini 1.5 Pro,以及自家的Claude 3 Opus。目前,升级版Claude 3.5 Sonnet已经在Amazon Bedrock平台可用,与此同时,新模型Claude 3.5 Haiku发布,预计将于本月晚些时候在平台上推出。

2024-10-25 10:19:45 993

原创 一夜之间,大模型像人一样操控电脑了!Claude 3.5重磅升级,抢先OpenAI

在 OSWorld 这项测试模型使用计算机的能力的评估基准上,Claude 当前的准确度为 14.9%,虽然远远不及人类水平(通常为 70-75%),但却远高于在此基准上排名第二的 AI 模型(7.8%)。该公司举了个例子:如果用户是一名开发者,使用的软件有好几个,同时也已经给予了 Claude 适当的权限,那么 Claude 就可以查看用户能看到的屏幕,然后统计其所要移动的垂直和水平像素的数量,从而点击到正确位置。并且在每一个阶段,研究人员都将与安全团队紧密合作,确保 Claude 的新功能更加安全。

2024-10-25 10:15:17 1224

原创 2024大模型面试八股(含100道答案)

*?**大模型LLM(Large Language Models) 通常采用基于Transformer的架构。Transformer模型由多个编码器或解码器层组成,每个层包含多头自注意力机制和前馈神经网络。这些层可以并行处理输入序列中的所有位置,捕获长距离依赖关系。大模型通常具有数十亿甚至数千亿个参数,可以处理大量的文本数据,并在各种NLP任务中表现出色。

2024-10-24 10:30:31 1249

原创 大模型预训练“狼人杀”,是谁悄悄掉队了?

国内最顶尖的这些大模型初创公司,现在站到了该做取舍的十字路口。十月初,市场中传出消息,称智谱AI、零一万物、MiniMax、百川智能、月之暗面、阶跃星辰这六家被称为“AI六小虎”的中国大模型独角兽中,有两家公司已经决定逐步放弃预训练模型,缩减了预训练算法团队人数,业务重心转向AI应用。所谓预训练,一般指的是利用大规模数据对模型进行无特定任务的初步训练,让模型学习到通用的语言模式、知识和特征等。

2024-10-24 10:27:46 811

原创 LangChain 创始人万字科普:手把手教你设计 Agent 用户交互

其次,随着智能体采取更多的行动,这些行动的结果会反馈给 LLM,这会导致上下文窗口不断扩大,进而可能导致 LLM 分心,表现不佳。虽然这听起来很基础,但很多时候传递给 LLM 的提示中并没有包含足够的信息,导致它无法做出合理的决策。和流式聊天最大的区别在于,非流式聊天的响应是以完整的批次返回的,这是个缺点,因为你不知道系统内部发生了什么,但另一方面,Linus Lee 提到,「我有意将界面设计得尽可能不透明」,不透明的界面需要一定程度的信任,但信任一旦建立,你就只需要把任务委派给智能体,而不必过多干预。

2024-10-24 10:09:42 823

原创 神书《从零构建大模型》分享,尚未发布,GitHub标星22k!!

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

2024-10-24 09:52:14 539

原创 一文彻底理解大模型 Agent 智能体原理和案例

大模型 Agent,作为一种人工智能体,是具备环境感知能力、自主理解、决策制定及执行行动能力的智能实体。简而言之,它是构建于大模型之上的计算机程序,能够模拟独立思考过程,灵活调用各类工具,逐步达成预设目标的智能存在。Agent 是 AI 大模型应用的主要新形态,在技术架构范式也发生了很大的变化,从面向过程的架构变成了面向目标架构。

2024-10-23 11:27:15 1340

原创 「装备大模型化」落地破圈!AI技术的一次自证与他证

狂飙500多天后,国内的“百模大战”正进入落地验证期。当下,行业和产业对大模型的期待,正从“”变为“10月22日-10月25日,2024中国国际社会公共安全产品博览会(简称:2024安博会)在北京举办。作为多年来AI产业发展的一大风向标,今年安博会上,宇视科技的展台成为人气最高展台之一。通过五大展区近百个展出单元,宇视亮出了AI大模型落地的实战成果和作战图谱。▲宇视展台现场人头攒动。

2024-10-23 11:19:45 747

原创 重磅!《大语言模型》新书出炉,人大出版,391页pdf

在2023年3月,我们发表了大语言模型综述文章《A Survey of Large Language Models》。这篇综述文章已经更新到第13个版本,包含了83页的正文内容,并收录了900余篇参考文献。该综述文章旨在系统地梳理大语言模型的研究进展与核心技术,讨论了大量的相关工作。自大语言模型综述的预印本上线以来,受到了不少读者的关注。自英文综述文章上线后,陆续有读者询问是否有对应的中文版本。为此,我们于2023年8月发布了该综述的中文翻译版。

2024-10-23 10:59:51 1190

原创 大模型在医学领域的应用

在《[还不知道语言大模型?读这篇文章就对了!》中我们了解了语言大模型是什么、语言大模型是怎么训练的、语言大模型有哪些应用、语言大模型面临哪些挑战,语言大模型未来可能的发展方向。在《大模型怎么用?详解语言大模型的能力和应用!》中对语言大模型的能力和应用进行的分类讨论。目前,大模型已经被应用到各个领域,包括金融、法律、教育和娱乐等。医学领域因其庞大且多样化的数据、复杂的问题以及对个性化治疗的需求,无疑是大模型应用最具前景的领域之一。

2024-10-23 10:52:15 1083

原创 10分钟了解腾讯云混元大模型AIGC系列产品

其实说到AIGC,作为开发者,大家其实已经见怪不怪了,那么AIGC是什么,这里我再简单科普一下。AIGC的全称是Artificial Intelligence Generated Content (人工智能生成内容)或者说叫生成式人工智能,是指基于生成对抗网络、大型预训练模型等人工智能的技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容的技术。每一家大厂商都有属于自己的AIGC产品,那么今天在这里主要是科普一下腾讯系的AIGC产品-腾讯云混元大模型系列。

2024-10-22 14:12:39 1580

原创 当下大语言模型(LLM)应用的架构介绍

离线评估是在模型与人类互动之前,评定模型是否达到了一定性能标准的测试。这些测试通过向模型提出问题(有正确或错误的答案,而这些答案是人类所知道的)来衡量模型输出的延迟、准确性和上下文相关性。此外,还有一部分测试用于处理含糊不清的答案,称为增量评分。这种类型的离线评估允许你将模型输出评为部分正确(例如,80% 正确),而不是简单地判定为对或错。**定制大语言模型。**训练大语言模型意味着构建支架和神经网络来实现深度学习。

2024-10-22 14:08:57 806

原创 从0-1搭建金融智能助理保姆级教程:拆箱即用的微信公众号后端+AI Agents智能体框架

定义AI Agents执行流程,首先需要告诉大模型任务有哪些 Tools(函数or工具) 可以选择,以及用户的输入是什么。以我们构造金融助理Agent为例子,需要大模型解析的一个函数function finance_stock_price_api,明确入参类型: symbol_list 是 list类型,market 市场是string 类型。代码语言:txt复制。

2024-10-22 14:02:20 852

原创 如何手撸一个自有知识库的RAG系统

RAG通常指的是"Retrieval-Augmented Generation",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统。

2024-10-22 13:52:29 821

原创 大模型落地实践:同花顺大模型技术应用及优化

众所周知,大模型参数量大,通用能力强,综合性能好。但在同花顺业务场景中最初使用大模型的时候,发现用大模型的效果与传统方法差距不大,甚至有时候逊于原先传统的方法。所以最初在业务角度并不够重视,然而近期随着大模型技术的快速发展,我们也在逐步尝试将大模型在业务中落地,目前大模型在自然语言处理相关的业务里都取得了比传统模型更优的效果,下面详细介绍相关工作。图 1图 2同花顺的问答业务主要是“同花顺问财”,主要场景在同花顺APP语音助手、问财APP端、问财Web端等。业务形式是将用户输入的问句解析为 conditio

2024-10-21 15:07:13 1694

原创 大模型应用的10种架构模式

在塑造新领域的过程中,我们往往依赖于一些经过实践验证的策略、方法和模式。这种观念对于软件工程领域的专业人士来说,已经司空见惯,设计模式已成为程序员们的重要技能。然而,当我们转向大模型应用和人工智能领域,情况可能会有所不同。面对新兴技术,例如生成式AI,我们尚缺乏成熟的设计模式来支撑这些解决方案。作为一位老码农,我在这里整理总结了一些针对大模型应用的设计方法和架构模式,试图应对和解决大模型应用实现中的一些挑战,如成本问题、延迟问题以及生成的不准确性等。所有资料 ⚡️ ,朋友们如果有需要全套 《》,

2024-10-21 14:52:30 904

原创 大模型实操 | LoRA、QLoRA微调大模型实战技巧分享,含常见QA解答!

增加数据量和模型的参数量是公认的提升神经网络性能最直接的方法。目前主流的大模型的参数量已扩展至千亿级别,「大模型」越来越大的趋势还将愈演愈烈。这种趋势带来了多方面的算力挑战。想要微调参数量达千亿级别的大语言模型,不仅训练时间长,还需占用大量高性能的内存资源。为了让大模型微调的成本「打下来」,微软的研究人员开发了低秩自适应(LoRA)技术。LoRA 的精妙之处在于,它相当于在原有大模型的基础上增加了一个可拆卸的插件,模型主体保持不变。LoRA 随插随用,轻巧方便。对于高效微调出一个定制版的大语言模

2024-10-21 14:43:58 1264

原创 一文详解AI模型部署及工业落地方式

最近在复盘今年上半年做的一些事情,不管是,还是写一些组件代码等,零零散散是有一些产出。虽然有了一点点成果,但仍觉着缺点什么。作为深感还有很多很多的地方啊。所有资料 ⚡️ ,朋友们如果有需要全套 《》,沉迷学习无法自拔既然要学习,那么学习路线就显得比较重要了。本文重点谈谈学习的一些基础和需要提升的地方。这也是老潘之前学习、或者未来需要学习的一些点,这里下,也希望大家能够提出一点意见。这个词儿大家肯定不陌生,可能有些小伙伴还不是很清楚这个是干嘛的,但总归是耳熟能详了。近些年来,在深度学习算法已经。

2024-10-21 14:32:34 1026

原创 深度解析RAG技术在大模型时代的原理与实践

在 LLM 时代,RAG 的具体定义指的是,当回答问题或生成文本时,首先从大量文档中检索相关信息。随后,利用这些检索到的信息来生成响应或文本,从而提高预测质量。索引:文档被分割成块,编码成向量,并存储在向量数据库中;检索:根据语义相似性检索与问题最相关的前 k 个块;生成:将原问题和检索到的词块一起输入大语言模型中,生成最终答案。RAG 文本问答RAG 多模态问答。

2024-10-21 14:19:23 1837

原创 2024!深入了解 大语言模型(LLM)微调方法(总结)

众所周知,大语言模型(LLM)正在飞速发展,各行业都有了自己的大模型。其中,大模型微调技术在此过程中起到了非常关键的作用,它提升了模型的生成效率和适应性,使其能够在多样化的应用场景中发挥更大的价值。那么,今天这篇文章就带大家深入了解大模型微调。其中主要包括什么是大模型微调、什么时候需要大模型微调、大模型微调方法总结、大模型微调最佳实践等。在介绍大模型微调方法之前,首先带大家了解一下大语言模型的项目生命周期,它大致可以分为以下几个步骤,如下图所示:首先,明确项目目标。

2024-10-18 14:07:34 1081

原创 Windows本地部署Ollama+qwen本地大语言模型Web交互界面并实现公网访问

本文主要介绍如何在Windows系统快速部署Ollama开源大语言模型运行工具,并安装Open WebUI结合cpolar内网穿透软件,实现在公网环境也能访问你在本地内网搭建的大语言模型运行环境。近些年来随着ChatGPT的兴起,大语言模型 LLM(Large Language Model)也成为了人工智能AI领域的热门话题,很多大厂也都推出了自己的大语言模型,并或多或少的开源了自己的大语言模型,今天就来分享一个最近很火,且对于小白来说比较好上手本地部署的运行本地LLM的工具Ollama。

2024-10-18 13:42:15 1586

原创 大模型系列——解读RAG

RAG即检索增强生成,为 LLM 提供了从某些数据源检索到的信息,并基于此修正生成的答案。RAG 基本上是 Search + LLM 提示,可以通过大模型回答查询,并将搜索算法所找到的信息作为大模型的上下文。查询和检索到的上下文都会被注入到发送到 LLM 的提示语中。嵌入式搜索引擎可以通过 Faiss 来实现,向量搜索领域成为了RAG的一个助力。像pinecone 这样的。

2024-10-18 13:36:35 1264

原创 【独家】万字长文带你梳理Llama开源家族:从Llama-1到Llama-3

总之,Llama模型的发布不仅证明了开源模型在全球AI领域的重要性,也为AI的未来发展方向提供了新的视角和动力。通过持续的技术进步和社区驱动的创新,Llama有望继续推动全球AI技术的广泛应用和发展。

2024-10-18 11:52:15 1144

原创 Java技术转(兼顾)产品经理——读《快速转行做产品经理》有感

年前部门一次性购买了一批书,我知道这次我应该会被指派阅读一些偏向于管理类的书籍,但是没想到美女领导直接给了我这本书《快速转行做产品经理》,其实一开始我有点反抗,因为我并不想放弃我的技术核心行业,我更喜欢去研究Java各类框架的源码,写一些开源的项目。(毕竟我平时也经常在Github上行走,不过近期主要是文章类的上传)图片描述美女领导希望我能快速消化并慢慢将职能扩展,这是一件需要我适应的事情,不过书我还是在年后的第一个工作周消化了,并在周末抽时间写了一篇读后感。以前读书的很多习惯没有养成,比如。

2024-10-17 11:26:50 847

原创 转型AI产品经理需要掌握的硬知识(三):2B和2C类AI产品&公司&脑洞

第一篇文章中,系统介绍了AI发展史,在学习的过程中也看到过关于这一轮AI崛起持续不了多长时间的论点,但笔者乐观的认为这一轮AI崛起不会如前两次般遭遇冬天,也不会像前两年大红大紫的3D打印和AR/VR一样火不过一年(产品化不成功,刚需使用场景缺失)。从前两轮AI崛起没落可以看出,人工智能的发展受到以下四个因素的限制:计算能力、大数据、算法、产品化和资本因素的限制。计算能力:人工智能的概念于1956年提出,当时IBM的电脑仅能存储5M数据,其运算速度与今天的一部普通手机的运算速度差距都如同云泥。

2024-10-17 11:17:34 806

原创 转型AI产品经理需要掌握的硬知识二:AI常见概念和算法梳理

前文中我们提到了深度学习,既然有深度学习就一定有浅度学习,其区别体现在隐藏层的数量上,一般来说,浅层学习没有隐藏层或者只有一层隐藏层,常见算法包括线性回归、逻辑回归、随机森林、SVM、K-means、RBM、AutoEncoder、PCA、SOM等。深度学习通常会有较多隐藏层,可以表达复杂函数,识别更多复杂特征。常见算法有CNN卷积神经网络和RNN递归神经网络,而基于RNN衍生出了LSTM和GRU等一系列算法。

2024-10-17 11:13:38 938

原创 转型AI产品经理需要掌握的硬知识(一):AI产品经理能力模型和常见AI概念梳理

从现在的招聘市场来看,产品经理岗位已经出现大量细分,如数据产品经理,支付产品经理,ERP产品经理,CRM产品经理,供应量产品经理,POP产品经理等,AI产品经理可能将成未来的一个主流细分岗位,而且因为AI对应的行业不同,AI产品经理下面将衍生出大量的细分行业AI产品经理。在讨论AI产品经理之前,我们来看看,非AI产品在公司中需要面对哪些角色,而面对这些角色需要的能力模型是什么,在这个基础上我们再来讨论AI产品经理的能力模型。

2024-10-17 11:10:52 832

原创 用通俗易懂的方式讲解:一文详解大模型 RAG(检索增强生成)

RAG 技术是一种检索增强生成的方法,结合了大型语言模型和检索系统的优势,以提高生成内容的准确性、相关性和时效性。相比于仅依赖大型语言模型的生成,RAG技术可以从外部知识库中检索信息,避免了模型的幻觉问题,并提升了对实时性要求较高问题的处理能力。与传统的知识库问答系统相比,RAG技术更加灵活,可以处理非结构化的自然语言文本。RAG并非旨在取代已有的知识库问答系统,而是作为一种补充,强调实时性和准确性,并且通过结合生成和检索机制来提升自然语言处理任务的效果。增强数据获取。

2024-10-16 11:33:20 1762

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除