题解 luoguP3480 【[POI2009]KAM-Pebbles】

博弈论题题都是神仙

这题怎么考虑?我们发现石子时刻满足从左到右递增,感觉没什么思路,那么根据博弈论的套路,我们开始。。天马行空地乱想

先考虑 S G SG SG函数,发现这题取石子的限制是时刻在变的,显然不行。

然后,这题多堆石子且并不相互独立,没什么表打,打表也滚粗了。

石子个数递增??是不是长得像阶梯??(大雾

顺着这个瞎想的思路,再康一康题目,发现移走一堆石子,它两边石子与它的差值会变。

怎么变呢?设一堆石子移走 x x x,显然左边与它的差值 − x -x x,右边与它的差值 + x +x +x,这不就是阶梯 n i m nim nim吗??

什么?你不知道阶梯 n i m nim nim?那你肯定没有好好看洛咕日报。这里不详细展开了。

左边与它的差值 − x -x x,右边与它的差值 + x +x +x,那么显然模型就是一个反向 ( ( (从右向左 ) ) )的阶梯,做一遍阶梯 n i m nim nim,问题解决。

博弈论代码真的短:

#include<bits/stdc++.h>
#define ts cout<<"ok"<<endl
#define ll long long
#define hh puts("")
using namespace std;
int n,a[1005];
inline int read(){
    int ret=0,ff=1;char ch=getchar();
    while(!isdigit(ch)){if(ch=='-') ff=-ff;ch=getchar();}
    while(isdigit(ch)){ret=ret*10+(ch^48);ch=getchar();}
    return ret*ff;
} 
signed main(){
    int T=read();
    while(T--){
        n=read();
        int ans=0;
        for(int i=1;i<=n;i++) a[i]=read();
        for(int i=n;i>=1;i--)
            if((n-i+1)&1)
                ans^=(a[i]-a[i-1]);
        puts(ans?"TAK":"NIE");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值