博弈论题题都是神仙
这题怎么考虑?我们发现石子时刻满足从左到右递增,感觉没什么思路,那么根据博弈论的套路,我们开始。。天马行空地乱想。
先考虑 S G SG SG函数,发现这题取石子的限制是时刻在变的,显然不行。
然后,这题多堆石子且并不相互独立,没什么表打,打表也滚粗了。
石子个数递增??是不是长得像阶梯??(大雾
顺着这个瞎想的思路,再康一康题目,发现移走一堆石子,它两边石子与它的差值会变。
怎么变呢?设一堆石子移走 x x x,显然左边与它的差值 − x -x −x,右边与它的差值 + x +x +x,这不就是阶梯 n i m nim nim吗??
什么?你不知道阶梯 n i m nim nim?那你肯定没有好好看洛咕日报。这里不详细展开了。
左边与它的差值 − x -x −x,右边与它的差值 + x +x +x,那么显然模型就是一个反向 ( ( (从右向左 ) ) )的阶梯,做一遍阶梯 n i m nim nim,问题解决。
博弈论代码真的短:
#include<bits/stdc++.h>
#define ts cout<<"ok"<<endl
#define ll long long
#define hh puts("")
using namespace std;
int n,a[1005];
inline int read(){
int ret=0,ff=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-') ff=-ff;ch=getchar();}
while(isdigit(ch)){ret=ret*10+(ch^48);ch=getchar();}
return ret*ff;
}
signed main(){
int T=read();
while(T--){
n=read();
int ans=0;
for(int i=1;i<=n;i++) a[i]=read();
for(int i=n;i>=1;i--)
if((n-i+1)&1)
ans^=(a[i]-a[i-1]);
puts(ans?"TAK":"NIE");
}
return 0;
}