问题描述:任意整数都可以用二进制表示,比如:137的2进制表示为10001001
可得到如下表达式:137=2^7+2^3+2^0。 进而可以表示成:2(7)+2(3)+2(0)
而7又可以表示成2(2)+2+2(0),3可以表示 成2+2(0)
所以137可以表示成:2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输出任意1-20000之间的数的类似上述的表示
问题分析:很明显,这是一道递归实现的题。我的思路是首先将原十进制数通过栈这种数据结构转化为二进制,然后将其保留在一个数组中,然后对于数组中的每一个非零项,输出2()的形式,括号内填的是指数,可以根据数组长度和下标确定。然后再将指数递归地表示。
特别要注意,从输出第二项开始,在前面要先输出一个“+”号。 此外,在数组的倒数第二位,也就是2的1次方,和倒数第一位2的0次方,要特殊处理。
代码实现:
#include <iostream>
#include <stack>
using namespace std;
void conversion(int n){
stack<int> s;
int num[15]; //存储转换的二进制数
while(n!=0){
s.push(n%2);
n = n/2;
}
int i = 0;
int length = (int)s.size();
while(!s.empty()){
num[i++] = s.top();
s.pop();
}
bool flag = true;
for(int j=0;j<length;j++){
if(num[j]!=0){
if(flag)
flag = false;
else
cout<<"+";
if(j!=(length-2)&&j!=(length-1)){
cout<<"2(";
conversion(length-1-j);
cout<<")";
}
else{
if(j==(length-1))
cout<<"2(0)";
else
cout<<"2";
}
}
}
}
int main(){
int n;
cin>>n;
conversion(n);
return 0;
}