数据调试与优化:一次数据中心看板 T+1 改 T+0 优化过程

本文介绍了如何将一个用户数据看板从T+1更新策略优化为T+0,以满足实时数据需求。通过用户行为数据保存后实时发送MQ消息,开发独立服务消费数据并生成报表,从而实现数据的即时聚合和更新。该过程涉及MQ、数据服务生成流程和数据聚合策略的调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐阅读:

背景

团队目前在做一个用户数据看板(下面简称看板),基本覆盖用户的所有行为数据,并生成分析数据,用户行为数据来源于多个数据源(餐饮、生活日用、充值消费、交通出行、通讯物流、交通出行、医疗保健、住房物业、运动健康…),基于对大量数据的任意请求、排序和统计,没有办法对原生表(原生多表查询相对复杂)直接进行数据采用,所以我们在当日的凌晨获取前一天数据,并将数据做成Json对象保存在Mongo数据库中。

所以看板最初采用得是T+1的策略,这样就减少了实时数据计算的过程,另一方面能够保证数据的准确性。但是目前很多人反馈,希望能够实时的获取到看板最新的数据,而且每月月底会有消费数据核对,消费数据按照看板统计得出并核对,如果等到第二天ÿ

背景技术 [0002]Big Data (大数据),或称巨量资料,指的是在传统数据处理应用软件不足以处理的大或复杂的数据集。大数据也可以定义为来自各种来源的大量非结构化或结构化数据。从学术角度而言,大数据的出现促成广泛主题的新颖研究。这也导致各种大数据统计方法的发展。[0003]现目前,临床护理的项目是有很多种的,每个患者护理的内容也是不同的,这样一来,相关临床护理数据是很多,如何对患者信息进行管理是现目前难以解决的一个问题。 发明内容 [0004]为善相关技术中存在的技术问题,本申请提供了基于大数据的临床护理数据管理方法及系统。[0005]第一方面,提供一种基于大数据的临床护理数据管理方法,包括:获得待处理临床护理数据,所述待处理临床护理数据目标种类的临床护理事件数据相匹配;基于待处理数据管理指令从所述待处理临床护理数据中抽取对应于所述目标种类的若干个存在联系的属性,所述待处理数据管理指令结合所述待处理临床护理数据中的属性集合目标目录的护理事项是事先设定的,所述目标目录所述目标种类相对应;调用所述待处理临床护理数据和若干个所述存在联系的属性对预配置线程进行配置,以得到第一数据管理线程,所述预配置线程的配置过程基于配置指令进行,所述配置指令指示的挖掘操作若干个所述存在联系的属性相匹配;结合所述待处理临床护理数据对所述第一数据管理线程进行优化,以得到第二数据管理线程;获得待管理护理数据,并将所述待管理护理数据输入所述第二数据管理线程中,以得到所述待管理护理数据中的临床护理事件数据对应于所述目标种类的数据管理结果。[0006]在一种独立实施的实施例中,所述基于待处理数据管理指令从所述待处理临床护理数据中抽取对应于所述目标种类的若干个存在联系的属性,包括:结合所述待处理数据管理指令从所述待处理临床护理数据中抽取对应于所述目标种类的若干个待定属性;将若干个所述待定属性输入待处理数据管理线程进行评分,以得到待定特征值;结合所述待定特征值对所述待定属性进行挑选,以得到若干个所述存在联系的属性。[0007]可以理解的是,基于待处理数据管理指令从所述待处理临床护理数据进行抽取时,善了抽取不准确的问题,从而能够精确地得到目标种类的若干个存在联系的属性。[0008]在一种独立实施的实施例中,所述结合所述待处理数据管理指令从所述待处理临床护理数据中抽取对应于所述目标种类的若干个待定属性,包括:统计所述待处理临床护理数据中各个属性集合的关键特征数据;结合所述关键特征数据确定关键属性集合;结合所述待处理数据管理指令确定所述关键属性集合所述目标目录的护理事项;通过所述护理事项确定对应于所述目标种类的若干个所述待定属性。[0009]可以理解的是,结合所述待处理数据管理指令从所述待处理临床护理数据进行抽取时,善了关键特征数据不准确的问题,从而能够准确地得到目标种类的若干个待定属性。[0010]在一种独立实施的实施例中,所述结合所述待定特征值对所述待定属性进行挑选,以得到若干个所述存在联系的属性,包括:结合所述待定特征值对所述待定属性进行挑选,以得到特征属性集合;确定所述目标种类对应的特征属性集合;从所述特征属性集合中调用所述特征属性集合相匹配的属性集合进行检测,以得到若干个所述存在联系的属性。[0011]可以理解的是,结合所述待定特征值对所述待定属性进行挑选时,善了特征属性集合不准确的问题,从而能够准确地得到若干个所述存在联系的属性。[0012]在一种独立实施的实施例中,所述方法还包括:结合所述目标种类确定校验属性集合;向服务器发送所述校验属性集合,以使得所述服务器搭建目标属性队列;接收所述目标属性队列,并结合所述目标属性队列对若干个所述存在联系的属性进行调试。[0013]可以理解的是,通过准确地获得校验属性集合,从而保障了属性进行调试的精度。[0014]在一种独立实施的实施例中,所述方法还包括:响应于所述存在联系的属性的确定获得重要指标信息;结合所述重要指标信息对所述配置指令中挖掘操作对应的挖掘事项进行设定,以增加若干个所述存在联系的属性的挖掘权重。[0015]可以理解的是,准确地获得重要指标信息,从而保障了挖掘权重的可靠性。[0016]在一种独立实施的实施例中,所述结合所述待处理临床护理数据对所述第一数据管理线程进行优化,以得到第二数据管理线程,包括:响应于所述第一数据管理线程的生成确定目标数据管理场景;结合所述目标数据管理场景调用特征配置集;通过所述特征配置集和所述待处理临床护理数据确定目标配置集;结合所述目标配置集对所述第一数据管理线程进行优化,以得到所述第二数据管理线程。[0017]可以理解的是,结合所述待处理临床护理数据对所述第一数据管理线程进行优化时,善了目标配置集不准确的问题,从而能够
04-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值