为啥现在很多爬虫工程师都不做爬虫了?

互联网是世界上最大的数据库,越来越多的个人和组织日益倚重互联网数据来学习和决策。典型的应用包括价格情报、品牌舆情、市场调查、零售选品、智能获客、政务舆情、背景调查等等。

采集、分析和融合非隐私公开数据有利于行业发展、数据要素流通和技术进步。

根据 Opimas Research 报告,全球网页挖掘和融合的市场规模大约每年 100 亿美金,其中外部采购支出大约每年20亿美金,并且以每年超过70% 的速度增长。更进一步,以知识图谱为核心的认知智能是更为广阔的市场。

从互联网数据中获得数据和见解是一项基础性的需求,互联网是世界上最大的数据库,但从互联网获得数据从未容易过。

问:爬虫到底有哪些应用场景?

从行业应用场景角度看:

  1. 认知智能:高精度结构化全体网页,为认知智能提供基础知识图谱
  2. 情感分析:从社交媒体平台、新闻和评论等数据源提取信息,以量化和解读公司、品牌、产品的声誉,跟踪竞争对手,或者收集政务舆情,及时了解任何可能重要的突发事件
  3. 价格情报:电商网站更改价格越来越频繁,竞争对手定价和库存监控变得越来越重要。监控竞争对手的定价有助于企业调整自身产品的市价率。品牌商也通过渠道巡检来监控渠道定价,以确保分销商遵守定价政策
  4. 供应链管理:使用网络数据进行需求预测、销量预测,以帮助管理物流、采购、库存等。譬如帮助电商对产品销量进行预测,从而制定补货计划,优化库存;航空公司监控市场并调整其定价和航线;而食品公司则通过跟踪农产品原产地气候变化,来预测农产品质量并选择供应商
  5. 市场营销:收集有关竞争对手的信息、识别销售线;从新闻、社交媒体和评论中收集信息并进行分析,跟踪需要客服和支持的问题,并进一步制定产品开发和市场进入策略。网络数据还可用于潜在客户生成,识别可能成为特定服务或产品目标的个人或公司
  6. 经济与投资研究:从网络数据中生成可分析数据,并通过API 直接交付到投资公司模型,可以近乎实时地推动投资决策。投资公司使用测量移动位置、交通模式、天气、卫星图像、财务报表、宏观经济指标等数据集来帮助制定投资决策。市场数据汇总也被广泛应用于直接投资决策。对一些缺乏行业数据的新兴行业,从网络中获得自身数据指标可能是获得影响未来规划的关键见解的唯一机会
  7. 风险管理:使用网络数据增强风险管理措施,如对员工、供应商、交易对手进行背景调查以控制风险,或者用于监控地缘政治风险和检测欺诈

从技术角度看:

  1. 每日采集百万量级电商页面做市场调查和竞品分析
  2. 采集数千个网站并降低规则失效率
  3. 采集整个互联网并建立搜索引擎、信息流产品或者知识图谱
  4. 开发数据采集器,架设自己的数据采集公有云

所以,你看,原来爬虫技术可以做这么多事情,为什么以前不觉得呢?

因为以前你学的是假爬虫技术!

问:爬虫到底有哪些难点?

网络爬虫在各种语言中都有实现,譬如 Java, Kotlin, Javascript, Python, Go, C++ 等。随着网站变得越来越复杂,页面变动越来越频繁,越来越多的网站由 Vue,React 等技术动态生成,建议网络爬虫直接从浏览器自动化工具开始,譬如 Selenium,Playwright,Puppeteer,Crawlee,PulsarRPA 等。这些工具本身由某一种语言编写,但往往对使用者提供了多种语言绑定。

譬如,Selenium 由 Java 编写,但是提供了 Java, Python, C#, Ruby, JavaScript, Perl, PHP, R, Objective-C, Haskell 这些语言的编程接口;Playwright 由 Javascript 写成,但是提供了 JavaScript, Java, Python, C# 的编程接口。

尤其不建议再用 Requests, Scrapy 等原始工具了,不要陷入花里胡哨、无穷无尽的爬虫对抗中,这种对抗很多时候是一条死胡同,譬如采用动态自定义字体技术,已经可以彻底阻断 HTTP 抓包方式的采集了。

很多人认为 Requests, Scrapy 等原始工具的具有效率优势,这并不正确:

  1. 对单一资源进行过于频繁的访问,会导致目标站点崩溃,从而带来法律风险
  2. 对单一资源进行过于频繁的访问会触发目标站点的反爬机制
  3. 对现代浏览器进行优化和和合理配置,譬如屏蔽不相关资源,其效率可以和原始 HTTP 效率媲美
  4. 同人力成本相比,硬件很便宜
  5. 其他效率相关弊病

选择什么语言开始你的爬虫之旅,需要综合考虑当前需求职业规划

如果只是临时性解决问题,那么 Crawlee/PulsarRPA 就是很好的选择,它们是开箱即用的,解决了阻挡在你和网页数据之间的绝大多数拦路虎。此时不建议选用 Selenium,Playwright,Puppeteer,如果使用它们,还有一大批技术问题需要解决。

如果希望从爬虫入手开始自己的职业生涯,那么 Java 语言就是很好的选择,因为工作机会很多。

如果你要学习高级爬虫知识,譬如:

  1. 连续采集
  2. 大规模分布式
  3. 任务调度
  4. 性能保证
  5. 数据质量保证
  6. 系统架构设计
  7. API 设计
  8. 机器人流程自动化(RPA)
  9. 高级数据采集语言
  10. 高级信息提取算法
  11. 增强分析
  12. 机器学习
  13. 弹性计算
  14. 云化服务
  15. 存储处理
  16. 运维工具
  17. 降低数据获取成本
  18. 降低团队技能要求
  19. 提高数据规模
  20. 解决数据融合问题
  21. 提升时效价值
  22. 提高系统可维护性

或者如果你是专业人士,需要解决最具挑战的网络数据采集问题,譬如:

  1. 每日采集百万量级电商页面做市场调查和竞品分析
  2. 采集数千个网站并降低规则失效率
  3. 采集整个互联网并建立大语言模型、搜索引擎、信息流产品或者知识图谱
  4. 开发一款供非技术人员用的“数据采集器
  5. 架设自己的数据采集公有云

那么,PulsarRPA 是你唯一的选择。

PulsarRPA国内镜像)为解决网络数据管理、多源异构数据融合、数据采集等问题,开发了一系列基础设施和前沿技术。类似 Playwright 这样的浏览器驱动,在 PulsarRPA 中仅仅只是一个不大的子系统,可见单单 Playwright 能够解决的问题极其有限。为了性能、稳定性、容错性等考虑,我们也不会使用 Playwright 作为浏览器驱动,而是基于 CDP 从头开发。

传统数据采集方案有哪些问题?

目前大家常用的主流的数据采集软件,包括 selenium, playwright, puppeteer 等,不是为数据采集开发的,不适合数据采集;而大家熟知的 scrapy, requests 等,已经越来越不适应现代网页了。

一、现在主流网站常用的反爬手段基本都用了,譬如Cookie跟踪,IP跟踪,访问频率限制,访问轨迹跟踪,CSS 混淆等等。

、使用基本的 HTTP 协议采集,如 requests, scrapy, jsoup, nutch 等,会陷入无穷无尽的爬虫/反爬虫对抗中,得不偿失,并且未必能解决,譬如说采用了动态自定义字体的站点就不可能解决。

、使用浏览器自动化工具如 selenium, playwright, puppeteer 等进行数据采集,会被检测出来并直接屏蔽。

、使用 puppeteer-extra, apify/crawlee 这样的工具,虽然提供了 WebDriver 隐身特性,一定程度上缓解了这个问题,但仍然没有完全解决。

  1. 上述工具没有解决访问轨迹跟踪问题
  2. Headless 模式能够被检测出来。云端爬虫通常以 headless 模式运行,即使做了 WebDriver 隐身, headless 模式也能够被检测出来
  3. 其他爬虫对抗问题

即使解决完上述问题,也仅仅是入门而已。在稍稍正式一点的采集场景下,仍然面临诸多困难:

  1. 如何正确轮换IP?事实上,仅轮换IP是不够的,我们提出“隐私上下文轮换
  2. 如何使用单台机器每天提取数千万数据点
  3. 如何保证数据准确性
  4. 如何保证调度准确性
  5. 如何保证分布式系统弹性
  6. 如何正确提取 CSS 混淆 的字段,它的 CSSPath/XPath/Regex 每个网页都不同,怎么解决?
  7. 如何采集数百个电商站点并避免爬虫失效?
  8. 如何降低总体拥有成本

关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

二、Python必备开发工具

三、Python视频合集

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、Python练习题

检查学习结果。

六、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

 最后祝大家天天进步!!

上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值