前言
在当今科技迅猛发展的时代,人工智能已成为各领域的焦点。特别是扩散模型(Diffusion Models),作为一种新兴技术,正日益受到关注。这种基于深度学习的模型,通过模拟信息在神经网络中的传播过程,实现了对复杂系统的建模与预测。
作为生成式人工智能的关键技术之一,扩散模型通过逐步去除噪声而生成数据的机制,成为多个技术领域的重要推动力。该模型能够处理多种类型的数据,如图像、文本、音频等,并能自动学习数据中的特征与模式。本文包括对扩散模型的概念、理论和技术的解析,并对市场上的知名扩散模型及其应用进行整理和综述,旨在分析这项技术在实际行业中的影响,欢迎大家一起交流、讨论。
一、什么是扩散模型 (Diffusion Models)?
扩散模型是一种用于图像生成及其他计算机视觉任务的生成模型,**核心是通过向现有数据添加随机噪声,逐步“扩散”样本,再逆向这一过程,将噪声转换为结构化输出。**这一过程借鉴了物理学中分子随机运动的概念,即像素被视为一滴墨水的分子,随着时间的推移,分子的随机运动最终会导致它们在玻璃杯中均匀分散。通过建模并逆转这一扩散过程,AI模型能够“去噪”并生成新的图像。
所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~
扩散模型最早由Jascha Sohl-Dickstein等在 2015 年的论文Deep Unsupervised Learning using Nonequilibrium Thermodynamics[1] 中提出。随后,宋飏博士等在 2019 年的论文Generative Modeling by Estimating Gradients of the Data Distribution[2] 中进一步发展了这一概念。2020 年, Jonathan Ho等人的论文Denoising Diffusion Probabilistic Models[3] 推动了扩散模型的快速应用。
尽管出现时间较短,扩散模型已成为机器学习领域的重要组成部分,广泛应用于图像生成、修复、超分辨率、音视频生成、药物设计和分子生成等领域。为简单起见,本文将重点介绍图像生成。
[1] Deep Unsupervised Learning using Nonequilibrium Thermodynamics(使用非平衡热力学原理的深度无监督学习);论文地址:https://arxiv.org/abs/1503.03585
[2] Generative Modeling by Estimating Gradients of the Data Distribution(通过估计数据分布的梯度进行生成建模);论文地址:https://arxiv.org/abs/1907.05600
[3] Denoising Diffusion Probabilistic Models(去噪扩散概率模型);论文地址:https://arxiv.org/abs/2006.11239
二、 扩散模型的理论基础与原理
扩散模型的训练过程涉及逐步去除数据中的噪声,并不断调整模型参数,学习数据的基本模式并提高生成样本的质量。与变分自编码器(VAE)类似,扩散模型也是通过将数据映射到一个潜在空间,再将其还原回原始状态来优化目标函数。不过,扩散模型的独特之处在于,它使用马尔可夫链来建模数据,并通过逐层减少噪声的方式解码数据。
1. 扩散模型训练中的迭代过程
扩散模型的目标是学习数据集的底层分布,通过迭代优化输出来学习生成与训练数据相似的新样本。这一过程始于一个“噪声”样本,模型通过概率变换逐步更新样本,使其更接近目标输出。每一步迭代中,模型都会生成潜在变量,来捕捉数据的基本特征和模式,并将这些变量反馈回模型中,以进一步优化输出。这样,**扩散模型就能够捕捉训练数据中存在的细粒度细节、微妙的相关性和高阶依赖性。**这种反馈机制使得扩散模型能够逐步提升生成样本的质量,从而提高输出的准确性和保真度。
2. 扩散模型的工作原理和图像生成
训练和部署扩散模型的过程可以分为三个关键阶段:前向扩散过程、反向扩散过程和图像生成。
**前向扩散过程的目的是将数据集中的干净数据(例如图像或音频样本)逐步转换为纯噪声。**这一过程通常通过迭代添加高斯噪声实现,直到数据分布呈现高斯分布。从数学角度看,这一过程可以用马尔可夫链表示,每个时间步骤的结果仅受其前一个时间步骤的影响。
通过缓慢添加(去除)噪声生成样本的正向(反向)
扩散过程的马尔可夫链。__(来源:Ho et al. 2020 & Lil’Log)
马尔可夫链中每一步添加的高斯噪声不是恒定的也不是任意的,而是源自原始图像的结构,并且其添加率随着每个步骤而稳步增加。噪声越大,模型越能准确学习训练数据“低密度”区域(即训练数据中代表性较低的视觉类别),方法是将噪声数据填充到这些区域;但也可能破坏数据,从而降低整体准确性。较小的噪声对原始数据的破坏较小,但在低密度区域的表现较差。因此,为了实现两全其美的效果,扩散模型在训练中使用多种尺度的噪声,已达到最佳效果。
反向扩散过程是机器学习的实际发生之处,是模型学习如何将高斯噪声转换成清晰图像的关键。**一旦训练完成,模型就能通过逐步去噪从高斯噪声中生成新的图像。**通过在反向传播过程中计算损失函数的梯度,然后通过梯度下降调整模型权重以最小化损失函数,模型对整个训练数据集的预测将变得更加准确。
一旦扩散模型学会了准确估计每一步要减去的噪声,它就可以用来生成新图像,方法是从它学到的数据分布中随机采样噪声图像,然后对其进行去噪。与VAE类似,在采样过程中引入一点随机性元素使扩散模型能够生成类似于训练数据的新图像,而不是直接重现训练图像。
与反向扩散训练过程不同,生成过程中的步骤数量不必与正向过程中使用的步骤数量相匹配**。**因为模型被训练为预测每个图像步骤中的全部噪声,而不是该步骤中要去除的特定噪声量。步骤越少,速度越快,计算需求越低,但可能会在细节上有所牺牲。步骤越多,通常可以提高准确性,但代价是速度降低和计算成本增加。
图源:LeewayHertz
3. 扩散模型与生成对抗网络(GAN)
扩散模型是一种新型的深度生成模型。它在计算机视觉领域中,尤其是在图像合成任务上,打破了生成对抗网络 (GAN) 长期的主导地位。**与GAN不同,扩散模型不是一次性生成图像,而是通过迭代细化的方式,逐步提升生成图像的质量;其最显著的优势是由于扩散过程的迭代性质,训练和生成过程非常稳定。**此外,扩散模型能够处理各种数据类型,包括图像、音频和文本。这种灵活性使得研究人员能够探索扩散模型的多种应用,如文本转图像和图像修复。
4. 扩散模型的主要类型
**扩散模型可分为三种主要变体:去噪扩散概率模型 (DDPM)、基于分数的生成模型 (SGM) 和随机微分方程 (Score SDE)。**每种公式都代表一种使用扩散过程建模和生成数据的独特方法,并且在应用领域也各有侧重。
DDPM模型利用两个马尔可夫链:一个是将数据扰动为噪声的前向链,另一个是将噪声转换回数据的反向链。SGM模型的关键思想是用一系列增强的高斯噪声扰动数据,并通过训练以噪声水平为条件的深度神经网络模型(称为噪声条件分数网络或NCSN)来联合估计所有噪声数据分布的分数函数。Score SDE是利用SDE进行噪声扰动和样本生成,而去噪过程需要估计噪声数据分布的得分函数。
不同类型的生成模型概述(图源:Lil’Log)
三、市场上的主要扩散模型产品
扩散模型是生成式人工智能领域中最为先进的神经网络架构之一,其中最杰出的代表是流行的文本转图像模型,如Stability AI的Stable Diffusion, OpenAI的DALL-E(自DALL-E 2起)、Midjourney和Google的Imagen。这些模型显著提升了其他用于图像合成的机器学习架构的性能和稳定性,下面我们将逐一展开介绍。
1. DALL-E
DALL-E是由OpenAI开发的一系列AI图像生成器,能够根据自然语言描述生成逼真的图像和艺术作品。DALL-E 2于2022年4月推出,能够更好地理解和处理复杂的文本描述。现在OpenAI已经把DALL-E集成到它的ChatGPT系列产品中。
2. Stable Diffusion
由Stability AI创立的标准扩散模型,实质为两阶段训练过程,在多主题提示、无条件图像生成、文本到图像合成以及超分辨率任务中取得明显的优势。同时,通过克服像素空间操作的计算挑战,Stable Diffusion可以满足用户的可扩展性和质量需求。此外,DreamStudio作为由Stability AI开发的Stable Diffusion的简化版本,允许用户通过简单的文本输入生成高质量的图像。
3. Sora
Sora是OpenAI在2024年2月发布的首个文本生成视频模型,继承了DALL-E 3的画质和遵循指令能力,能根据用户文本提示快速制作长达一分钟的高保真视频,还可从静态图像生成视频。Sora可以理解复杂场景中元素的物理属性及关系,生成具有多个角色、特定运动****的复杂场景,具有高度可定制性和可扩展性。
延伸阅读:
【茶思专题】Sora来袭:欢喜?害怕?震撼!__(点击阅读)
4. Midjourney
Midjourney提供更多梦幻般的艺术风格视觉效果,如安迪・沃霍尔、达芬奇、达利和毕加索等,还能识别特定镜头或摄影术语,从而吸引那些从事科幻文学或需要更多艺术风格作品的人。Midjourney更像是一种绘画工具,它旨在提供更高的图像质量、更多样化的输出、更广泛的风格范围和更好的图像动态范围。
5. Imagen
由Google开发的基于扩散的图像生成模型,利用大型Transformer语言模型的功能来理解文本,同时依靠扩散模型的强大功能来生成保真度极高的高质量图像,采用多尺度生成策略和噪声调节增强技术,可生成高分辨率、细节丰富、色彩准确的图像。Imagen使用相当大的无分类器指导权重来指导和控制图像生成,从而增强了照片真实感和图像文本对齐。
四、扩散模型的主要应用领域
扩散模型具有广泛的应用维度,能够满足游戏、建筑、室内设计、医疗保健等多个行业的特定需求。它们不仅能够生成高质量的图像、音视频内容,还能创建三维模型、模拟人体运动,并对现有图像进行编辑和恢复。
-
数字艺术创作与平面设计:扩散模型可生成适用于医学成像、艺术设计等领域的顶级图像。设计师可从简化的图像编辑、色彩校正和降噪任务中受益,从而提高设计过程中的效率和创造力。
-
电影、动画和娱乐:扩散模型正在重新定义这些领域的制作流程,为创建逼真的背景、角色和特效提供了经济高效的解决方案。这些模型不仅加速了内容创作的速度,还使****电影制作人能够探索超越常规的想法,尽情释放创造力。此外,增强现实和虚拟现实体验也从这些技术中受益匪浅。
-
音乐、声音设计和神经科学:扩散模型的应用不仅促进了独特声音和音乐作品的创作,还推动了认知过程模拟的发展。在神经科学领域,扩散模型作为理解大脑机制、预测神经模式及提升人工智能算法效能的有力工具,正发挥着重要作用。
-
医疗保健、生物学和市场研究:在医疗保健和生物学领域,扩散模型简化了早期诊断,增强了图像合成,并有助于蛋白质序列设计,为医学成像和生物数据分析做出了宝贵贡献。市场研究人员利用扩散模型来分析消费者行为,预测需求并优化营销策略。
-
3D建模和零售可视化:在3D建模中,扩散模型可以根据文本快速生成概念框架,丰富细节生成,自动添加复杂纹理,还能实现风格多样化探索,快速产出不同艺术风格模型。在零售可视化领域,通过产品可视化展示,扩散模型的应用可以多角度呈现产品细节,并创建个性化购物场景,依据消费者偏好生成对应场景,增强购物沉浸感,满足消费者对个性化购物体验的需求。
总体来说,扩散模型已深入各个行业,在数据生成和创意表达方面提供了无与伦比的能力。随着技术的不断进步,扩散模型的融合有望重新定义各领域的创新与创造力边界,为变革性进展与新应用开辟道路。
五、扩散模型的挑战和未来发展
**扩散模型是一种强大的工具,但与所有人工智能模型一样,它们也有自身的局限性。**首先,它们需要大量的计算资源,可能成为实时或大规模应用的障碍。其二,它们在推广到未知数据方面的能力可能有限,需要大量的微调或重新训练才能适应特定领域,这需要深入理解定制和优化的基础理论。此外,将这些模型融入人类的工作流程也存在挑战,因为必须确保人工智能生成的输出符合人类的实际意图。
同时,扩散模型领域正涌现出一系列令人振奋的发展趋势,它们正重塑着该领域的未来走向**。以下便是几个值得重点关注的关键领域:**
-
**高效采样技术:**研究人员正在探索新方法来提高扩散模型中的采样效率。朗之万动力学 (Langevin Dynamics)和Hamiltonian Monte Carlo算法等技术正在引起人们的关注。其它根据模型性能动态来灵活调整采样流程的自适应采样方法也正在兴起。
-
**混合模型和组合:**将扩散模型与诸如变分自动编码器(VAE)、生成对抗网络(GAN)等其他生成模型相融合,是当前颇为活跃的一个研究领域。这些混合模型的设计初衷是为了充分汲取两种方法的优势,实现互补共进。与此同时,研究人员正深入探究如何将扩散模型与自回归模型进行有机融合,以获取更为出色的性能表现。
-
**处理结构化数据:**扩散模型当前主要应用于图像、文本等非结构化数据领域。如今业界对将其拓展至结构化数据处理的兴趣与日俱增,这些结构化数据涵盖图形、时间序列、分子结构等。人们力求整合领域特定知识,并能够妥善处理具有特殊结构的数据,从而拓宽扩散模型的应用边界。
结论
扩散模型的基本原理是通过模拟物理扩散过程来生成数据,具有灵活性高、生成质量高和训练稳定性好等技术特点。**作为生成式AI的前沿技术,扩散模型在众多领域彰显出强大的应用潜力,正深刻地重塑着艺术创作、广告设计以及多媒体生成等领域的格局。**市面上诸如Stable Diffusion、Sora、Midjourney等知名模型,充分展现出扩散模型在生成质量与灵活性方面的巨大潜能,为该模型在各领域的创新发展注入了新的活力。
尽管扩散模型目前仍面临生成效率、伦理问题等诸多挑战,但其在技术演进与应用拓展方面的前景令人期待。**未来,扩散模型将在多模态生成、实时生成以及负责任AI等方向迎来新的突破。**这不仅会进一步推动生成式AI的发展与普及,更有望在复杂AI系统的开发进程中发挥关键的作用。
关于AI绘画技术储备
学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!
对于0基础小白入门:
如果你是零基础小白,想快速入门AI绘画是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案
包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!
零基础AI绘画学习资源介绍
👉stable diffusion新手0基础入门PDF👈
👉AI绘画必备工具👈
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末
👉AI绘画基础+速成+进阶使用教程👈
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
温馨提示:篇幅有限,已打包文件夹,获取方式在:文末