TensorFlow 使用 slim 模块搭建复杂网络

本文介绍了如何使用TensorFlow的slim模块搭建复杂的神经网络,包括利用slim.repeat和slim.stack简化模型搭建,定义损失函数,训练模型以及从checkpoint恢复模型参数的技巧。此外,还给出了vgg16模型的搭建示例。
摘要由CSDN通过智能技术生成

原文链接: TensorFlow 使用 slim 模块搭建复杂网络

上一篇: scrapy 代理使用

下一篇: TensorFlow infogan 生成 mnist 数据集

参考

https://blog.csdn.net/guvcolie/article/details/77686555

https://www.cnblogs.com/zyly/p/9146787.html

引入模块

import tensorflow.contrib.slim as slim

简化模型搭建

input = ...
with tf.name_scope('conv1_1') as scope:
  kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,
                                           stddev=1e-1), name='weights')
  conv = tf.nn.conv2d(input, kernel, [1, 1, 1, 1], padding='SAME')
  biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
                       trainable=True, name='biases')
  bias = tf.nn.bias_add(conv, biases)
  conv1 = tf.nn.relu(bias, name=scope)


net = slim.conv2d(input, 128, [3, 3], scope='conv1_1')

TF-Slim提供了标准接口用于组建神经网络,包括:

Layer TF-Slim
BiasAdd slim.bias_add
BatchNorm slim.batch_norm
Conv2d slim.conv2d
Conv2dInPlane slim.conv2d_in_plane
Conv2dTranspose (Deconv) slim.conv2d_transpose
FullyConnected slim.fully_connected
AvgPool2D slim.avg_pool2d
Dropout
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值