Flink CEP

Flink CEP

相关博客:

Flink-复杂事件(CEP)

Flink之CEP(复杂时间处理)

一、基本概念

1.1 什么是CEP

复杂事件处理(Complex Event Processing,简称CEP)

Flink CEP是Flink中实现的复杂事件处理(CEP)库。

CEP允许在无休止的事件流中检测事件模式,让我们有机会掌握数据中重要的部分。

一个或多个由简单事件构成的事件通过一定的规则匹配,然后输出用户想要得到的数据——满足规则的复杂事件。

1.2 CEP的特点

在这里插入图片描述

目标:从有序的简单事件流中发现一些高阶特征。

输入:一个或多个由简单事件构成的事件流。

处理:识别简单事件之间的内在联系,多个符合一定规则的简单事件构成复杂事件。

输出:满足规则的复杂事件。

二、Pattern API

处理事件的规则,被叫做“模式”(Pattern)。

Flink CEP提供了Pattern API,用于对输入流数据进行复杂事件规则定义,用来提取符合规则的时间序列

使用CEP的基本流程如下:

// 数据流
DataStream<Event> input = ...

// 1.定义一个Pattern
Pattern<Event, Event> pattern = Pattern.<Event>begin("start").where(...)
  .next("middle").subtype(SubEvent.class).where(...)
  .followedBy("end").where(...);

// 2.将创建好的Pattern应用到输入事件流上
PatternStream<Event> patternStream = CEP.pattern(input,pattern);

// 3.检出匹配事件序列,处理得到结果
DataStream<Alert> result = patternStream.select(...);

2.1 个体模式(Individual Patterns

组成复杂规则的每一个单独的模式定义,就是“个体模式”

个体模式可以包括“单例(singleton)模式”和“循环(looping)模式”。

单例模式只接受一个事件,而循环模式可以接收多个。

下面介绍一下常用的API:

量词(Quantifier)

可以在一个个个体模式后追加上两次,也就是指定循环次数。

// 匹配出现4次
start.times(4)

// 匹配出现2/3/4次
// greedy 贪婪的,尽可能多的匹配
start.times(2,4).greedy

// 匹配出现0次或者4次
start.times(4).optional

// 匹配出现1次或者多次
start.oneOrMore

// 匹配出现2,3,4次
start.times(2,4)

// 匹配出现0次、2次或者更多次,并且尽可能多的重复匹配
start.timesOrMore(2).optional.greedy

条件(Condition)

每个模式都需要指定触发条件,作为模式是否接受事件进入的判断依据。

CEP中的个体模式主要通过where()or()until()来指定条件。

按照不同的调用方式,可以分成以下几类

  • 简单条件

    通过where()方法对事件中的字段进行判断筛选,决定是否接受该事件。

    // 判断该事件是否以foo开头
    start.where(new SimpleCondition<Event>){
      @Override
      public boolean filter(Event value) throws Exception{
        return value.getName.startsWith("foo");
      }
    }
    
  • 组合条件

    将简单条件进行合并,or()方法表示逻辑或相连,where的直接组合就是and()

    pattern
    	.where(event => ... /* some condition */)
    	.or(event => ... /* or condition */)
    
  • 终止条件

    如果使用了oneOrMore或者oneOrMore.optinal,建议使用until()作为终止条件,一遍清理状态。

  • 迭代条件

    能够对模式之前所有接收的事件进行处理。

    可以调用ctx.getEventsForPattern("name")

    .where(new IterativeCondition<Event>(){...})
    

2.2 组合模式

组合模式(Combining Patterns)也叫做模式序列

将很多个体模式组合起来,就形成了整个的模式序列。

模式序列必须从一个“初始模式”开始,如下:

Pattern<Event, Event> start = Pattern.<Event>begin("start")

在这里插入图片描述

个体模式之间连接有多个选择:

  • 严格近邻

    • 所有事件按照严格的顺序出现,中间没有任何不匹配的事件,由next()指定
    • 例如:对于模式"a next b",事件序列[a,c,b1,b2]没有匹配
  • 宽松近邻

    • 允许中间出现不匹配的事件,由followedBy()指定
    • 例如:对于模式"a followedBy b",事件序列[a,c,b1,b2]匹配为[a,b1]
  • 非确定性宽松近邻

    • 进一步放宽条件,之前已经匹配过的事件也可以再次使用,由followByAny()指定。
    • 例如:对于模式"a followedAny b",事件序列[a,c,b1,b2]匹配为{a,b1},{a,b2}
  • 除了以上模式序列以外,还可以定义“不希望出现某种近邻关系”

    • notNext() :严格的不近邻

    • notFollowedBy() : 不在两个事件之间发生

      比如:a not FollowedBy c,a Followed By b,a希望之后出现b,且不希望ab之间出现c

  • 需要注意的是

    • 所有模式序列必须以begin()开始

    • 模式序列不能以notFollowedBy()结束,必须后面指定与什么事件相邻,比如followedBy()

    • “not”类型的模式不能被optional(0次或多次)所修饰

    • 此外,还可以为模式指定事件约束,用来要求在多长时间内匹配有效。

      比如:next.within(Time.seconds(10))

2.3 模式组

将一个模式序列作为条件嵌套在一个个体模式里,成为一个模式。

三、模式的检测

在指定要查找的模式序列后,就可以将其应用于输入流以检测潜在匹配。

调用CEP.pattern(),给定输入流和模式,就能得到一个PatternStream

DataStream<Event> input = ...
Pattern<Event, Event> pattern = Pattern.<Event>begin("start").where(...)...

// 进行模式的检测
PatternStream<Event> patternStream = CEP.pattern(input, pattern);

四、匹配事件的提取

创建PatternStream之后,就可以应用select或者flatselect方法,从检测到的事件序列中提取事件了。

select()方法需要输入一个select function作为参数,每成功匹配的事件序列都会调用它。

select()以一个Map<String, List>来 接收匹配到的事件序列,其中Key就是每一个模式的名称,而value就是所有接收到的事件的List类型

public OUT select(Map<String, List<IN>> pattern) throws Exception {
  IN startEvent = pattern.get("start").get(0);
  IN endEvent = pattern.get("end").get(0);
  return new OUT(startEvent, endEvent);
}

五、超时事件的提取

当一个模式通过within关键字定义了检验窗口时间时,部分事件序列可能因为超过窗口长度而被丢弃。为了能够处理这些超时的部分匹配,select和flatSelect API调用允许指定超时处理程序。

超时处理程序会接收目前为止由模式匹配到的所有事件,由一个OutputTag定义接收到的超时事件序列

PatternStream<Event> patternStream = CEP.pattern(input, pattern);

// 定义一个OutputTag
OutputTag<String> outputTag = new OutputTag<String>("side-output"){};

/**
* 使用Select处理超时事件时,需要传入三个参数
* 第一个:接收超时数据的OutputTag
* 第二个:处理超时数据的规则
* 第三个:处理正常数据的规则
*/
SingleOutputStreamOperator<ComplexEvent> flatResult = 
  patternStream.flatSelect(
  outputTag,
  new PatternFlatTimeoutFunction<Event, TimeoutEvent>() {...},
  new PatternFlatSelectFunction<Event, ComplexEvent>() {...}
);

// 输出超时数据
DataStream<TimeoutEvent> timeoutFlatResult = 
  flatResult.getSideOutput(outputTag);
  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力生活的黄先生

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值