Flink CEP
文章目录
相关博客:
一、基本概念
1.1 什么是CEP
复杂事件处理(Complex Event Processing,简称CEP)
Flink CEP是Flink中实现的复杂事件处理(CEP)库。
CEP允许在无休止的事件流中检测事件模式,让我们有机会掌握数据中重要的部分。
一个或多个由简单事件构成的事件通过一定的规则匹配,然后输出用户想要得到的数据——满足规则的复杂事件。
1.2 CEP的特点
目标:从有序的简单事件流中发现一些高阶特征。
输入:一个或多个由简单事件构成的事件流。
处理:识别简单事件之间的内在联系,多个符合一定规则的简单事件构成复杂事件。
输出:满足规则的复杂事件。
二、Pattern API
处理事件的规则,被叫做“模式”(Pattern)。
Flink CEP提供了Pattern API,用于对输入流数据进行复杂事件规则定义,用来提取符合规则的时间序列
使用CEP的基本流程如下:
// 数据流
DataStream<Event> input = ...
// 1.定义一个Pattern
Pattern<Event, Event> pattern = Pattern.<Event>begin("start").where(...)
.next("middle").subtype(SubEvent.class).where(...)
.followedBy("end").where(...);
// 2.将创建好的Pattern应用到输入事件流上
PatternStream<Event> patternStream = CEP.pattern(input,pattern);
// 3.检出匹配事件序列,处理得到结果
DataStream<Alert> result = patternStream.select(...);
2.1 个体模式(Individual Patterns)
组成复杂规则的每一个单独的模式定义,就是“个体模式”
个体模式可以包括“单例(singleton)模式”和“循环(looping)模式”。
单例模式只接受一个事件,而循环模式可以接收多个。
下面介绍一下常用的API:
量词(Quantifier)
可以在一个个个体模式后追加上两次,也就是指定循环次数。
// 匹配出现4次
start.times(4)
// 匹配出现2/3/4次
// greedy 贪婪的,尽可能多的匹配
start.times(2,4).greedy
// 匹配出现0次或者4次
start.times(4).optional
// 匹配出现1次或者多次
start.oneOrMore
// 匹配出现2,3,4次
start.times(2,4)
// 匹配出现0次、2次或者更多次,并且尽可能多的重复匹配
start.timesOrMore(2).optional.greedy
条件(Condition)
每个模式都需要指定触发条件,作为模式是否接受事件进入的判断依据。
CEP中的个体模式主要通过where()
,or()
和until()
来指定条件。
按照不同的调用方式,可以分成以下几类
-
简单条件
通过
where()
方法对事件中的字段进行判断筛选,决定是否接受该事件。// 判断该事件是否以foo开头 start.where(new SimpleCondition<Event>){ @Override public boolean filter(Event value) throws Exception{ return value.getName.startsWith("foo"); } }
-
组合条件
将简单条件进行合并,
or()
方法表示逻辑或相连,where的直接组合就是and()
pattern .where(event => ... /* some condition */) .or(event => ... /* or condition */)
-
终止条件
如果使用了
oneOrMore
或者oneOrMore.optinal
,建议使用until()
作为终止条件,一遍清理状态。 -
迭代条件
能够对模式之前所有接收的事件进行处理。
可以调用
ctx.getEventsForPattern("name")
.where(new IterativeCondition<Event>(){...})
2.2 组合模式
组合模式(Combining Patterns)也叫做模式序列
将很多个体模式组合起来,就形成了整个的模式序列。
模式序列必须从一个“初始模式”开始,如下:
Pattern<Event, Event> start = Pattern.<Event>begin("start")
个体模式之间连接有多个选择:
-
严格近邻
- 所有事件按照严格的顺序出现,中间没有任何不匹配的事件,由
next()
指定 - 例如:对于模式"a next b",事件序列[a,c,b1,b2]没有匹配
- 所有事件按照严格的顺序出现,中间没有任何不匹配的事件,由
-
宽松近邻
- 允许中间出现不匹配的事件,由
followedBy()
指定 - 例如:对于模式"a followedBy b",事件序列[a,c,b1,b2]匹配为[a,b1]
- 允许中间出现不匹配的事件,由
-
非确定性宽松近邻
- 进一步放宽条件,之前已经匹配过的事件也可以再次使用,由
followByAny()
指定。 - 例如:对于模式"a followedAny b",事件序列[a,c,b1,b2]匹配为{a,b1},{a,b2}
- 进一步放宽条件,之前已经匹配过的事件也可以再次使用,由
-
除了以上模式序列以外,还可以定义“不希望出现某种近邻关系”
-
notNext()
:严格的不近邻 -
notFollowedBy()
: 不在两个事件之间发生比如:a not FollowedBy c,a Followed By b,a希望之后出现b,且不希望ab之间出现c
-
-
需要注意的是
-
所有模式序列必须以
begin()
开始 -
模式序列不能以
notFollowedBy()
结束,必须后面指定与什么事件相邻,比如followedBy()
-
“not”类型的模式不能被optional(0次或多次)所修饰。
-
此外,还可以为模式指定事件约束,用来要求在多长时间内匹配有效。
比如:
next.within(Time.seconds(10))
-
2.3 模式组
将一个模式序列作为条件嵌套在一个个体模式里,成为一个模式。
三、模式的检测
在指定要查找的模式序列后,就可以将其应用于输入流以检测潜在匹配。
调用CEP.pattern()
,给定输入流和模式,就能得到一个PatternStream
DataStream<Event> input = ...
Pattern<Event, Event> pattern = Pattern.<Event>begin("start").where(...)...
// 进行模式的检测
PatternStream<Event> patternStream = CEP.pattern(input, pattern);
四、匹配事件的提取
创建PatternStream之后,就可以应用select或者flatselect方法,从检测到的事件序列中提取事件了。
select()
方法需要输入一个select function作为参数,每成功匹配的事件序列都会调用它。
select()
以一个Map<String, List>来 接收匹配到的事件序列,其中Key就是每一个模式的名称,而value就是所有接收到的事件的List类型
public OUT select(Map<String, List<IN>> pattern) throws Exception {
IN startEvent = pattern.get("start").get(0);
IN endEvent = pattern.get("end").get(0);
return new OUT(startEvent, endEvent);
}
五、超时事件的提取
当一个模式通过within关键字定义了检验窗口时间时,部分事件序列可能因为超过窗口长度而被丢弃。为了能够处理这些超时的部分匹配,select和flatSelect API调用允许指定超时处理程序。
超时处理程序会接收目前为止由模式匹配到的所有事件,由一个OutputTag定义接收到的超时事件序列。
PatternStream<Event> patternStream = CEP.pattern(input, pattern);
// 定义一个OutputTag
OutputTag<String> outputTag = new OutputTag<String>("side-output"){};
/**
* 使用Select处理超时事件时,需要传入三个参数
* 第一个:接收超时数据的OutputTag
* 第二个:处理超时数据的规则
* 第三个:处理正常数据的规则
*/
SingleOutputStreamOperator<ComplexEvent> flatResult =
patternStream.flatSelect(
outputTag,
new PatternFlatTimeoutFunction<Event, TimeoutEvent>() {...},
new PatternFlatSelectFunction<Event, ComplexEvent>() {...}
);
// 输出超时数据
DataStream<TimeoutEvent> timeoutFlatResult =
flatResult.getSideOutput(outputTag);