Docker(十)-Docker运行elasticsearch7.4.2容器实例以及分词器相关的配置

3 篇文章 0 订阅
2 篇文章 0 订阅

1.下载镜像

1.1存储和检索数据
docker pull elasticsearch:7.4.2  

在这里插入图片描述

1.2可视化检索数据
docker pull kibana:7.4.2

在这里插入图片描述

2.创建elasticsearch实例

创建本地挂载数据卷配置目录
mkdir -p /software/elasticsearch/config  
创建本地挂载数据卷数据目录
mkdir -p /software/elasticsearch/data
写入远程任何机器访问配置
echo "http.host: 0.0.0.0" >> /software/elasticsearch/config/elasticsearch.yml

9200 发送http请求端口
9300 es分布式集群状态下节点通信端口
"discovery.type=single-node"  单节点模式运行
ES_JAVA_OPTS="-Xms64m-Xmx256m" 指定es运行最小,最大内存   

chmod -R 777 /software/elasticsearch/ 设置权限
未设置权限:"Caused by: java.nio.file.AccessDeniedException: /usr/share/elasticsearch/data/nodes"

docker run -d -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e ES_JAVA_OPTS="-Xms64m -Xmx256m" -v /software/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml -v /software/elasticsearch/data:/usr/share/elasticsearch/data -v /software/elasticsearch/plugins:/usr/share/elasticsearch/plugins   --name=elasticsearch7.4.2 elasticsearch:7.4.2	

在这里插入图片描述
在这里插入图片描述

3.创建Kibana实例

ELASTICSEARCH_HOSTS  指定ES主机地址
docker run -d -p 5601:5601 -e ELASTICSEARCH_HOSTS=http://192.168.179.101:9200 --name=kibana7.4.2 kibana:7.4.2

在这里插入图片描述
在这里插入图片描述

4.安装分词器插件

1.解压
elasticsearch-analysis-ik 7.4.2版本(与ES版本一致)
将下载的分词器压缩包 解压到 本地挂载数据卷插件目录,解压完成后会同步到docker elasticsearch容器/usr/share/elasticsearch/plugins插件目录下

在这里插入图片描述

2.进入elasticsearch容器内部查看是否已同步
docker exec -it elasticsearch7.4.2 /bin/bash

在这里插入图片描述

3.更改ik目录权限
chmod -R 777 ik/
4.验证ik分词器是否安装好
进入elasticsearch bin目录执行elasticsearch-plugin list(列出安装好的ES插件)

在这里插入图片描述

5.重启ES容器实例
6.kibana中使用ik分词器
POST _analyze
{
  "analyzer": "ik_smart",
  "text": "I人的项目"
}

I人是一组词,但未识别,所以需要自定义扩展一些分词
{
  "tokens" : [
    {
      "token" : "i",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "ENGLISH",
      "position" : 0
    },
    {
      "token" : "人",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "的",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 2
    },
    {
      "token" : "项目",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 3
    }
  ]
}
7.自定义扩展分词(通过nginx)
7.1 nginx中添加分词库(fenci.txt)
docker运行nginx容器实例可参考:https://blog.csdn.net/Java_Scholar0/article/details/140708367

将拓展的分词库放在nginx中,让ik分词器给nginx发请求,获取拓展的词库。

html文件夹下创建es文件夹并在其内创建fenci.txt文本,把拓展的分词加入到fenci.txt文本中

在这里插入图片描述

访问fenci.txt资源
http://192.168.179.101/es/fenci.txt

在这里插入图片描述

7.2配置ik分词器远程扩展分词地址
修改ik分词器配置文件
/software/elasticsearch/plugins/ik/config

在这里插入图片描述

将nginx中添加的分词库地址填写进去

在这里插入图片描述

7.3 重启ES容器
docker restart elasticsearch7.4.2
7.4 测试自定义扩展分词
POST _analyze
{
  "analyzer": "ik_smart",
  "text": "I人的项目"
}

发现I人没有被分割,则配置成功

{
  "tokens" : [
    {
      "token" : "i人",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "的",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "项目",
      "start_offset" : 3,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值