深度学习与自动驾驶-应用-卷积神经网络

导读:自动驾驶是先进生产力

           自动驾驶需要漫长的开发,将长期处于辅助驾驶阶段

           自动驾驶不光是技术问题,更是社会问题,需要更多的社会角色作为缓冲

                                                                                                        ——博主:Blood旌旗

对于自动驾驶这个技术,其实大家或多或少都对其存在抵触心理,但是在大势所趋之下,自动驾驶这个技术还是在不断地蓬勃发展! 

在过去的十年里,自动驾驶汽车技术取得了越来越快的进步,主要得益于深度学习和人工智能领域的进步。

一、了解深度学习

深度学习即深度神经网络学习,其概念源于人工神经网络的研究,是一种特殊的机器学习形式;其目的在于建立和模拟人脑进行分析学习的神经网络,通过模仿人脑的接受和反馈机制来解释数据;深度学习整个过程就是数据收采集、数据处理、数据训练和数据优化,最后形成高准确率的识别分类模型

深度学习技术概况

1-深卷积神经网络

2-递归神经网络

3-深度强化学习

CNN是自动驾驶中比较常用的深度学习模型,由卷积层、池化层和全连接层构成,其在图像处理上具有优势

卷积层

目的:用于目标图像特征提取

原理:通过一个可调参数的卷积核与上一层特征图进行滑动卷积运算,再加上一个偏置量得到一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值