C语言实现插入排序和希尔排序(动态图演示过程)

文章详细介绍了插入排序的基本思想和动画演示,以及希尔排序作为插入排序优化的方式,通过预排序减少比较次数。同时,分析了两种排序算法的时间复杂度,插入排序为O(n^2),希尔排序为O(n^(2/3)),并提供了C语言的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本篇文章将插入排序和希尔排序放在一起讲解,是因为后者可以说是前者的排序方式的一种优化,思路上大体一样,插入和希尔在整个排序的大章节中,算是比较简单的,与冒泡排序一样,相信大家理解起来也不会那么的困难

插入排序

在排序这一章节,很有意思的是,各种排序可以根据它们的名字猜出大概的思路,就比如插入排序,冒泡排序,快速排序等,从名字就可以看出各种排序的特点来。

插入排序的思路(文字)
我们先以一组比较短的数据来讲解一下插入排序的总体思路。

以数组【7,6,5,2,3,1】为例
我们将第二个数字 6 标记为end 将数组的第一个数字到end之间的所有数字看作成一个小的数组,即【7, 6】。 将end (6) 与end-1 (7) 进行比较,大小的向后移动,移动完之后,就是【6, 7】。 然后将end向后移动一位,到达数字 5 。此时数组中的数据为【6,7,5,2,3,1】

然后将【6,7,5】看作一个小数组进行排序,首先end (5) 和end-1 (7) 进行比较,大的向后移动,数组变成【6,5,7】 然后end向前移动一位,到达5的位置,然后end (5) 和 end-1 (6) 进行比较,大的数向后移动,数组变成【5,6,7】

此时数组【5,6,7,2,3,1】
然后end再从原来的位置向后移动一位,到达2的位置,然后重复的进行上述的比较,直到end走到数组的最后一个数子。

上述就是插入排序思路的文字解释了,当热对初学者来说是晦涩难懂,不过没关系,下面就用动图给大家演示一下这个过程,之后大家再结合下面的代码看一遍,保证药到病除!!

动图演示
画图的不好,勿喷
在这里插入图片描述
其实每次移动的就只有end而已,因为end-1会随着end的变化而变化的,其次就是,每次比较end和end-1,只要end-1比end大就交换两这,也就是上述所说到的大的数字向后走。

从其中我们不难看出来,这个过程是需要有两个循环的,一层循环控制的是end,当end走到数组外排序就完成了,内层循环是控制end和end-1之间小数组的,内层循环结束的条件就是end>0,因为当end是第一个数据的时候,end-1就会出现错误❌。

看到这里我想大家可以分析一下时间复杂度了,待会我们再来看时间复杂度的分析。

下面我们直接给出代码:

#include <stdio.h>
void Insert(int* a, int n)
{
  int i = 0;
  for(i = 1; i < n; ++i)
  {
    int end = i;
    while(end > 0)
    {
        if(a[end] < a[end-1])
        {
        //交换
          int tmp = a[end];
          a[end] = a[end-1];
          a[end-1] = tmp;
        }
        end--;
    }
  }
}

void Test()
{
  int arr[] = {-3,1,2,3,5,7,19,2,15,10,8,3,7,-1,-2};
  int sz = sizeof(arr) / sizeof(arr[0]);

  Insert(arr, sz);
	
  //打印数据
  int i = 0;
  for(i = 0; i < sz; i++)
  {
    printf("%d ", arr[i]);
  }
  printf("\n");
}

int main()
{
  Test();
  return 0;
}

时间和空间复杂度分析

实现了算法之后我们就来谈一下时间复杂度和空间复杂度吧

首先很好理解的是空间复杂度肯定是O(1),不理解的去补一下时间复杂度和空间复杂度的计算吧。

再然后就是时间复杂度的计算,其实也很好理解,每一次end无论是在小数组中遍历还是在大数组中进行遍历,都是n,所以整体的时间复杂度就是 O(n^2)。

希尔排序

上面我们说过希尔排序是对插入排序的一种优化,插入排序虽然做到了成功排序,但是在时间复杂度上还是消耗太大,接下来我们看一下希尔排序是怎么对插入排序进行优化的。

希尔排序的思路(文字)
为了更好的讲解希尔排序的思路,我们以一个比较长一点的数组为例
以数组【-3,1,2,3,5,7,19,2,15,10】为例

希尔排序与插入排序的区别在于,希尔排序会对原数据进行一个预排序
OK,下面先来讲解一下什么是预排序:
插入排序的时候,是直接以数组的第二个数字为end,依次往后的进行排序,每次和end进行比较的都是end-1,这就导致了时间复杂度是N^2的结果,但是如果我们在判断小数组的数据是否有序时,有序就跳出来,那么再假设此时的数据大部分都是有序的话,有一些的小数组就不必进如循环,从而帮我们节省了一定的时间。

现在我们要做的就是如何让原本错乱的数据出现一定的有序数字,这就是我们的预排序需要做的事情了,此时我们就需要跳跃式的进行插入排序,所谓的跳跃式就是,不再直接先对相邻的两个数字进行判断,而是先对相距一定距离的两个数字进行大小的判断,再通过不短的缩短数字之间的间距,从而对数据进行一个预排序的目的。

我们将这个间距暂时的命名为gap。

当gap从大到小不断缩短的这个过程就是预排序的过程,当gap为1的时候,就是插入排序了,只不过在gap为1的时候,由于预排序的作用,数据大概都已经是有序的了。

此时再进行一次插入排序,数据就会完全的有序。

看到这里的话,如果你是之前了解过希尔排序的,相信已经能写出代码来了。加油老铁!

同样的接下来我们还是用动态图来演示一遍上述的过程。

动图演示

勿喷!老铁。
在这里插入图片描述
这里我只演示了gap第一次值为4的走法,这趟循环过后,我们就可以再次通过gap = gap / 3 + 1来缩小gap,再次让数据更加的趋向有序一点。

所以我们是需要有三层循环的,第一层来控制gap的缩小
第二层我们来控制end的结束,我们不难发现,end结束的条件就是小于 n - gap
第三层来控制以gap为间距的小数组的排序

现在我们来解释为什么是gap = gap / 3 + 1,其实gap的起始值为多少都是可以的,只不过不能是太小(要不然预排序就发挥不特性了),关键的是,我们需要让gap的最后一次的值为1,因为只有gap的最后一次的值为1,才能完成对预排序过后数据的完全有序,gap / 3 + 1最终的值就只能为1,此时就正好进行最后一次的插入排序。

下面是代码:

void Shell(int* a, int n)
{
    int gap = n;

    while (gap > 1)
    {
        gap = gap / 3 + 1; 

        for (int i = 0; i < n - gap; ++i)
        {
            int end = i;
            int tmp = a[end + gap];
            while (end >= 0)
            {
                if (tmp < a[end])
                {
                    a[end + gap] = a[end];
                    end -= gap;
                }
                else
                {
                    break;
                }
            }
            //来的这里有两种可能
            //1.前面的数据都已经有序了
            //2.小的数据向前走
            a[end + gap] = tmp;
        }
    }
}

Test1()
{
    int arr[] = { -3,1,2,3,5,7,19,2,15,10,8,3,-7,1,2,-10 };
    int sz = sizeof(arr) / sizeof(arr[0]);

    Shell(arr, sz);

    int i = 0;
    for (i = 0; i < sz; i++)
    {
        printf("%d ", arr[i]);
    }
    printf("\n");
}
int main()
{
    Test1();
    return 0;
}

刚开始看不懂的话,大家可以以上面的数据为例,自己用笔画着走一遍,大致也就能明白了。

时间和空间复杂度分析

关于希尔排序的空间复杂度肯定也是O(1)了,希尔排序的时间复杂度就比较的难推了,我只认为自己写的不够好,就截断了,有人觉得,这个也每比直接插入排序快多少吧,但是它还是要比直接插入排序要快的,时间复杂度大概为O(n^(2/3)),证明大家感兴趣的话,可以找一下相关的文章看一下,但是没必要,你只要知道它比直接插入排序要快一些就OK了。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南山忆874

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值