iSNS & iSNSP:Internet 存储名称服务及 Internet 存储名称服务协议--网络大典

博客介绍了iSNS可按需支持iSCSI和/或iFCP协议,可能支持一种或两种,每种协议具体实现要求在第五部分讨论。对于iSCSI,iSNS是可选的;对于iFCP,iSNS是必需的,还给出了中英文版访问页面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

         iSNS (Internet 存储名称服务协议)通过提供的一组类似于光纤信道网络上可使用的服务,推动了 IP 网络中 iSCSI 和光纤信道存储设备可扩展配置和管理。这样 iSNS 就允许 IP 网络像光纤信道网络一样操作。 管理员不再需要 device-by-device 的管理模式,该模式中每个存储设备都需要手动配置各自的启动器和目标器列表。iSNS 中,每台存储设备都将发现和管理过程交给 iSNS 服务器,因而 iSNS 服务器被认为是统一配置点,通过该点管理工作站能够配置和管理整个存储网络,包括 iSCSI 和光纤信道设备。

  iSNS 可根据需要支持 iSCSI 和/或 iFCP 协议;根据实际需求,iSNS 可能支持上述一种或两种协议。其中每种协议的具体实现要求在第五部分作了进一步的讨论。对于 iSCSI 来说,iSNS 是可选择的;而对于 iFCP 来说,iSNS 则是必需的。

 

 

 

更多内容请访问以下页面: 

中文版:http://www.networkdictionary.com/chinese/protocols/isns.php

英文版:http://www.networkdictionary.com/protocols/isns.php

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最新版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个新的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值