当前搜索:

[置顶] APM监控--(六)Dapper,大规模分布式系统的跟踪系统

目前apm监控一般都遵循Google公司发布的Dapper规范,特转载一篇,供广大网友交流概述当代的互联网的服务,通常都是用复杂的、大规模分布式集群来实现的。互联网应用构建在不同的软件模块集上,这些软件模块,有可能是由不同的团队开发、可能使用不同的编程语言来实现、有可能布在了几千台服务器,横跨多个...
阅读(122) 评论(0)

[置顶] APM监控--(五)pinpoint使用手册

最近在使用pinpoint进行应用监控,发现网上对安装介绍的很详细,但是如何使用介绍的不是非常好,特别整理一篇使用手册,供广大网友学习,如有不通看法,请评论区交流。0.    前提条件•    请参考接入《APM监控--(二)Pinpoint部署手册》pinpoint1.    查看调用关系1.1...
阅读(107) 评论(1)

[置顶] APM监控--(四)Pinpoint扩展报警--超详细,各种问题解决之后的顺畅版本

部署完成pinpoint之后,并没有开放报警功能,而报警是每个公司都必要的功能,以下就跟着我一起开始开发报警功能并部署到服务器。1,下载源码包地址:https://github.com/naver/pinpoint/releases选择对应版本源码包,本次为1.7.1,单击下载2,编译源码在mav...
阅读(190) 评论(0)

[置顶] APM监控--(三)zipkin部署手册

一,基础知识储备分布式跟踪的目标一个分布式系统由若干分布式服务构成,每一个请求会经过多个业务系统并留下足迹,但是这些分散的数据对于问题排查,或是流程优化都很有限,要能做到追踪每个请求的完整链路调用,收集链路调用上每个服务的性能数据,计算性能数据和比对性能指标(SLA),甚至能够再反馈到服务治理中,...
阅读(156) 评论(1)

[置顶] APM监控--(二)Pinpoint部署手册

一,pinpoint是什么简单的说,Pinpoint是一款对Java编写的大规模分布式系统的APM工具,有些人也喜欢称呼这类工具为调用链系统、分布式跟踪系统。我们知道,前端向后台发起一个查询请求,后台服务可能要调用多个服务,每个服务可能又会调用其它服务,最终将结果返回,汇总到页面上。如果某个环节发...
阅读(224) 评论(1)

[置顶] APM监控--(一) 分布式系统服务跟踪技术选型参考

选型目的        随着公司业务的与日俱增,各个系统也越来越复杂,服务间的调用,服务的依赖,以及分析服务的性能问题也越棘手,因此引入服务追踪系统尤为重要。现有的服务追踪体系,基本都是参考Google的Dapper的体系来做的。通过跟踪请求的处理过程,来对应用系统在前后端处理、服务端调用的性能消...
阅读(106) 评论(3)

[置顶] 人工智能小例子(二)-基于keras+openCV的人脸识别

目前keras是对人工智能来说,入门比较好的一款中间件,屏蔽了很多参数配置和实现细节,直接一层层进行网络搭建就可以。最近一直在学习相关知识,但是一直也没有啥实用的功能出现,在网上有个例子,一下子就吸引住了我,使用keras迅速搭建一套人工智能系统,输入自己的照片和他人照片,训练其识别出自己,然后使...
阅读(1526) 评论(5)

[置顶] 人工神经网络基础数学研究-卷积

引子因研究兴趣不在图像处理,所以对图像中的『卷积』操作未做深入思考,直到某天,灵光一闪,我突然意识到图像『卷积』应该可以和『信号处理』联系起来更进一步图像卷积的本质,是提取图像不同『频段』的特征然而放眼望去,市面上大谈特谈『卷积』的文章,各种雷同,互相『借鉴』,都是在讲解卷积的不同方式、卷积的参数...
阅读(459) 评论(1)

[置顶] 人工神经网络(六)线性回归与分类, 解决与区别

机器学习可以解决很多问题,其中最为重要的两个是 回归与分类。 这两个问题怎么解决, 它们之间又有什么区别呢? 以下举几个简单的例子,以给大家一个概念1. 线性回归回归分析常用于分析两个变量X和Y 之间的关系。 比如 X=房子大小 和 Y=房价 之间的关系, X=(公园人流量,公园门票票价) 与 Y...
阅读(808) 评论(0)

[置顶] 人工神经网络(五)梯度下降法

在解决了线性求解问题之后,我们开始挑战更复杂的问题,开始研究非线性划分的问题,类似求解异或问题这样,而解决这类问题,我们先要学习一个概念,就是梯度下降(Gradient Descent),这个方法是解决机器学习领域最常采用的方法之一。梯度在微积分里面,对多元函数的参数求∂偏导数,把求得的各个参数的...
阅读(458) 评论(0)

[置顶] 人工神经网络(四)感知器学习规则推导

目前我们接触到的感知器学习规则,数学建模之后,我们知道如何调整权值,使得感知器的切分符合我们的预期输入,下面我们就用一个小推导,看看感知器是如何进行权值调整的:理论判定边界 判定边界由那些使得净输入n为零的输入向量确定: n=1WTP+b=w1,1p1+w1,2p2+b ...
阅读(600) 评论(0)

[置顶] flume高并发优化——(16)解决offsets变小问题

offsets初始化在上篇博客中《flume高并发优化——(14)解决空行停止收集数据问题,及offsets变小问题 》我们遗留了一个小问题,就是offsets变小的问题,迟迟未解决,经过研究flume代码发现,flume中,是自己管理offsets关系的,每个kafkachannel的代码中保留...
阅读(778) 评论(7)

[置顶] flume高并发优化——(15)中间件版本升级

在系统平稳运行一年的基础上,为提供更好的服务,现针对java,kafka,flume,zk,统一进行版本升级,请各位小伙伴跟着走起来,不要掉队啊! 名称 老版本号 新版本号 jdk 1.7.0_25 1.8.0 kafka 2.10-0.8.0.1 2.10-0....
阅读(2643) 评论(3)

opencv实时识别指定物体

一. 引入    opencv人脸识别大家应该都听说过,本篇目的是利用opencv从视频帧中识别指定的物体,并框出来,且可以保存截取到的物体图片,会将整个流程都讲一下,包括训练自己的分类器,使用训练好的分类器进行识别。这里以识别舌头为例。二.  环境:    1.  python 3.6.3   ...
阅读(175) 评论(0)

人工智能小例子(一)keras模拟一元方程

最近有网友反应,直接上人脸识别的例子有些跨度大,现在将我实验中的一个小例子公布给大家,纯做入门使用题目:有函数y = 0.5*x + 2在此函数基础上,增加绝对值不超过0.05的扰动,利用keras进行函数拟合预期结果:y=a1*x+a2a1接近0.5, a2接近2,则拟合成功思路:1,生成训练数...
阅读(391) 评论(1)

人工智能浅谈

先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可...
阅读(494) 评论(3)

人工神经网络(三)单层感知器代码实现

上篇文章,我们介绍了什么是单层感知器,这节课,我们来看看如果用代码实现一个单层感知器实验问题:假设平面坐标系上有三个点(3,3),(4,3)这两个坐标点的标签为 1 ,(1,1) 这个坐标的标签为-1 ,构建神经网络来分类思路:二维数据,需要两个数据点,将神经元偏置设置成另一个输入点,一共需要三个...
阅读(514) 评论(0)

人工神经网络(二)单层感知器

单层感知器能够用来模拟逻辑函数,例如逻辑非NOT、逻辑或非XOR、逻辑或OR、逻辑与AND和逻辑与非NAND等,但是不能用来模拟逻辑异或XOR(对于这个函数,必须用两层神经元)。稍后将讨论这个问题。 除了输入之外,偏置(bias)也经常被用于每个神经元,它在通过转换函数之前被加到输入的加权和上。权...
阅读(786) 评论(0)

人工神经网络(一)概述

机器最初被发明是为了服务人类,做人不擅长的事情,比如规律性,重复复杂运算,从第一代计算机诞生到现在,这个功能一次次提升,现在计算机核心部件cpu,在普通家用方面,比如i5-6600四个核心的计算能力大概在20gflops.,也就是每秒200亿次浮点运算,这是人类不能羡慕的一个能力,但是,机器依然限...
阅读(1908) 评论(0)

阿里巴巴Java开发规约扫描插件-Alibaba Java Coding Guidelines 在idea上安装使用教程

经过247天的持续研发,阿里巴巴于10月14日在杭州云栖大会上,正式发布众所期待的《阿里巴巴Java开发规约》扫描插件!该插件由阿里巴巴P3C项目组研发。P3C是世界知名的反潜机,专门对付水下潜水艇,寓意是扫描出所有潜在的代码隐患。这个项目组是阿里巴巴开发爱好者自发组织形成的虚拟项目组,把《阿里巴...
阅读(2804) 评论(4)
    个人资料
    专栏达人
    等级:
    访问量: 75万+
    积分: 1万+
    排名: 1016
    博客专栏
    最新评论