【题目描述】
给定N个数,求这N个数的最长上升子序列的长度。
【样例输入】
5
3 7 1 2 5
【样例输出】
3
思路:
对于每个位置的数值而言,最小的上升序列是其本身,即长度为1。
因此在循环当前数值之前的数据时候,只有比他小的才能加入以他为结尾的最长上升序列。
不妨记fun(n)为:以第n个数据为结尾的最长上升序列个数。
则,以上述的样例得:
fun(1)=1【没有前序,则为本身长度】
fun(2)=2【 3 7 所组成的长度】
fun(3)=1【前序都比1大,则为本身长度】
fun(4)=2【其本身长度】
fun(5)=3【 1 2 5 所组成的长度】
每次增添一项数据,则需要将此数据和前面的所有数据进行组合,每次组合后,选取最大的结果。
可见视频讲解:最长上升子序列
无记忆递归:
#include <iostream>
#include <cstdio>
using namespace std;
int a[1001];
int fun(int n){
if(n==1)
return 1;
else{
int ans=1;
for(int i=1;i<=n;i++){
if(a[i]<a[n]){
//当遇到比自己小的数字,加入一组序列中
ans=max(ans,fun(i)+1); //选取以a[n]结尾的最大长度
}
}
return ans