最长上升子序列【动态规划】

【题目描述】

给定N个数,求这N个数的最长上升子序列的长度。

【样例输入】

5
3 7 1 2 5

【样例输出】

3

思路:
对于每个位置的数值而言,最小的上升序列是其本身,即长度为1。
因此在循环当前数值之前的数据时候,只有比他小的才能加入以他为结尾的最长上升序列。
不妨记fun(n)为:以第n个数据为结尾的最长上升序列个数。
则,以上述的样例得:
fun(1)=1【没有前序,则为本身长度】
fun(2)=2【 3 7 所组成的长度】
fun(3)=1【前序都比1大,则为本身长度】
fun(4)=2【其本身长度】
fun(5)=3【 1 2 5 所组成的长度】
每次增添一项数据,则需要将此数据和前面的所有数据进行组合,每次组合后,选取最大的结果。
可见视频讲解:最长上升子序列

无记忆递归:

#include <iostream>
#include <cstdio>
using namespace std;

int a[1001];
int fun(int n){
   
    if(n==1)
        return 1;
    else{
   
    	int ans=1;
        for(int i=1;i<=n;i++){
   
            if(a[i]<a[n]){
   		//当遇到比自己小的数字,加入一组序列中
                ans=max(ans,fun(i)+1);		//选取以a[n]结尾的最大长度
            }
        }
        return ans
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值