NePTuNe 论文笔记

NePTuNe:Neural Powered Tucker Network for Knowledge Graph Completion

Shashank Sonkar, Arzoo Katiyar, Richard G.Baraniuk


- Introduction

目前的链接预测方法:

  1. 张量因式分解;由于因子分解方法的参数数量较少,因此训练和部署速度很快,但由于其基本的线性方法,表达能力有限。
  2. 和/或深度学习;深度学习方法表达能力更强,但计算成本也更高,而且由于它们有大量可训练的参数,容易过拟合。
    本文提出了神经驱动tucker网络(NePTuNe),一种新的混合链接预测模型,它将深度模型的表达能力与线性模型的速度和大小相结合。

- Background

NePTuNe是一种混合链路预测模型,利用了塔克和NTN的理想特征,其非线性使得NePTuNe比TuckER更具表现力。
利用Tucker分解中固有的共享核心张量原理,可以实现参数共享,同时显著减少参数数量,纠正过拟合,并使NePTuNe训练快速有效。

- Algorithm

TuckER打分函数:
在这里插入图片描述

NTN打分函数:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值