题目描述
Alice喜欢n位数,Bob喜欢能被m整除的数,请问被Alice和Bob都喜欢的数有多少个?
输入
第一行是一个整数K(K≤10000),表示样例的个数。 每个样例是一行,两个整数n(1≤n≤18),m(2≤m≤1000000)。
输出
每行输出一个样例的结果。
样例输入
4 1 2 3 2 3 3 3 10000样例输出
5 450 300 0
解题思路:
在解题之前,让我们先回归本质,返回童年。一起来做个小学数学题。
8 = 4*2 = 2+2+2+2
15 = 5*3 = 3+3+3+3+3
请问, 在所有≤8的自然数中,有几个数可以被2整除呢?
有没有人毫不犹豫的回答:这么简单!2、4、6、8。4个啊!你要小心咯,你是不是忘了一个很特别的数字——0,0可以被任何不为零的数整除。所以答案是5个。
那么又问, 在所有≤15的自然数中,有几个数可以被3整除呢?
想想是不是 5+1个,结合上面的等式,你有发现什么吗?
现在进行推广,自然数中 ∀x, x = n*m mod p; (mod 是 余 的符号,这的意思就是 余数为 p )
除0之外,所有 ≤x 的自然数中,能被m整除的数有多少个?
是不是就是 n 个。因为 1*m 可以被 m 整除,2*m 可以被 m 整除,…… ,(n-1)*m 也可以被 m 整除,n*m 也可以被 m 整除~~
现在又加上一个限定条件:求在一个区间范围内,能被整数m整除的数有多少个? 你会不会了呢?
我们设区间 左端点为 l ,右端点为 r 。
分别求出 ≤ l - 1 的自然数中,能被m整除的数 的个数 s,
≤ r 的自然数中,能被m整除的数 的个数 t。
最后 t - s,是不是就是 区间 [l,r] 中,能被m整除的数的个数。
推到这里,我们这个题是不是就能很容易的写出来了。
题目中最大的有 18位数,肯定会爆int,所以我们记得要用 __int64 类型(64bit整数)
AC代码:
#include <stdio.h>
int main()
{
int K,n,m;
__int64 s,t,l,r;
scanf("%d",&K);
while ( K --)
{
scanf("%d %d",&n,&m);
l = 1, r = 10;
for (int i = 1; i < n; i ++)
l *= 10, r *= 10;
l --, r --; // l 是最大的n-1位数, r 是最大的n位数
s = l/m;
t = r/m;
if (n == 1)
printf("%I64d\n",t+1);
else
printf("%I64d\n",t-s);
}
return 0;
}