题目描述
一个集合,任取3个不同的元素,求其最小公倍数中最小的值是多少?
输入
第一行是样例数T(1≤T≤100)。 每个样例的第一行是一个整数n(3≤n≤50),表示集合元素的个数。 每个样例的第二行是n个整数a1,a2,…,an,1≤ai≤106。
输出
每个样例输出一行。
样例输入
3 5 2 3 5 7 11 5 2 3 5 7 15 6 12 3 2 1 6 4样例输出
30 15 4样例解释
第一个样例,最小的公倍数为lcm(2,3,5)=30。
第二个样例,最小的公倍数为lcm(3,5,15)=15。
第一个样例,最小的公倍数为lcm(1,2,4)=4。
解题思路:还记得最小公倍数怎么求不—— x*y/gcd(x,y) 。那三个也是一样,先找到前两个数的最小公倍数,然后再拿该最小公倍数和第三个数匹配,找它们之间的最小公倍数。 至于哪一个是最小的,我们暴力循环查找一遍就知道啦。 数据相乘会很大,注意爆int
AC代码:
#include <stdio.h>
#define Int __int64
Int gcd(Int x,Int y){ // 最大公因数
return y>0 ? gcd(y,x%y) : x;
}
Int lcm(Int u,Int v,Int w){ // 最小公倍数
Int p,q;
p = gcd(u,v); q = u*v / p;
p = gcd(q,w); q = q*w / p;
return q;
}
int main()
{
int T,n;
int num[52] = {0};
scanf("%d",&T);
while ( T --)
{
scanf("%d",&n);
for (int i = 0; i < n; i ++)
scanf("%d",&num[i]);
Int min = lcm(num[0],num[1],num[2]); // 默认最前面三个最小公倍数最小
for (int i = 0; i < n-2; i ++) // 暴力查找
{
for (int j = i+1; j < n-1; j ++)
{
for (int k = j+1; k < n; k ++)
{
Int mid = lcm(num[i],num[j],num[k]);
if (mid < min) min = mid;
}
}
}
printf("%I64d\n",min);
}
return 0;
}