XTU-OJ 1334-Least Common Multiple

题目描述

一个集合,任取3个不同的元素,求其最小公倍数中最小的值是多少?

输入

第一行是样例数T(1≤T≤100)。 每个样例的第一行是一个整数n(3≤n≤50),表示集合元素的个数。 每个样例的第二行是n个整数a1,a2,…,an,1≤ai≤106。

输出

每个样例输出一行。

样例输入

3
5
2 3 5 7 11
5
2 3 5 7 15
6
12 3 2 1 6 4

样例输出

30
15
4

样例解释

第一个样例,最小的公倍数为lcm(2,3,5)=30。
第二个样例,最小的公倍数为lcm(3,5,15)=15。
第一个样例,最小的公倍数为lcm(1,2,4)=4。

解题思路:还记得最小公倍数怎么求不——  x*y/gcd(x,y) 。那三个也是一样,先找到前两个数的最小公倍数,然后再拿该最小公倍数和第三个数匹配,找它们之间的最小公倍数。 至于哪一个是最小的,我们暴力循环查找一遍就知道啦。 数据相乘会很大,注意爆int

AC代码:

#include <stdio.h>
#define Int __int64

Int gcd(Int x,Int y){               // 最大公因数
    return y>0 ? gcd(y,x%y) : x;
}
 
Int lcm(Int u,Int v,Int w){         // 最小公倍数
    Int p,q;
    p = gcd(u,v);   q = u*v / p;
    p = gcd(q,w);   q = q*w / p;
    return q;
}
 
int main()
{
    int T,n;
    int num[52] = {0};
    scanf("%d",&T);
    while ( T --)
    {
        scanf("%d",&n);
        for (int i = 0; i < n; i ++)
            scanf("%d",&num[i]);
        Int min = lcm(num[0],num[1],num[2]);        // 默认最前面三个最小公倍数最小
        for (int i = 0; i < n-2; i ++)              // 暴力查找
        {
            for (int j = i+1; j < n-1; j ++)
            {
                for (int k = j+1; k < n; k ++)
                {
                    Int mid = lcm(num[i],num[j],num[k]);
                    if (mid < min)  min = mid;
                }
            }
        }
        printf("%I64d\n",min);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值