C语言创建二叉树以及三种遍历详解(你一定能看明白的超简单代码)

1.二叉树的创建

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
//创建结构体
typedef struct TreeNode {
	int data;//数据域
	struct TreeNode* left;//指向当前结点左子树的指针
	struct TreeNode* right;//指向当前结点右子树的指针
}TreeNode;

这里我采取的是链式存储

有了树的数据结构,我们就可以来定义数的每个结点了,并且给每个结点进行赋值操作,以下代码均在main函数中书写

TreeNode n1;
	TreeNode n2;
	TreeNode n3;
	TreeNode n4;
	n1.data = 1;
	n2.data = 3;
	n3.data = 5;
	n4.data = 7;

此时的结点状态如图所示
在这里插入图片描述

每个节点都是独立的存在,我们需要利用上述定义的指针进行连接(大家想怎么连接就怎么连接,毕竟喜欢的对象要自己挑

	n1.left = &n2;
	n1.right = &n3;
	n2.left = &n4;
	n2.right = NULL;
	n3.left = NULL;
	n3.right = NULL;
	n4.left = NULL;
	n4.right = NULL;

连接完成后,就变成了这个亚子
在这里插入图片描述
注意两个问题
1.n1.left指向n3的地址,原因何在?
在这里插入图片描述
left是个指针哇,指的可不就是地址嘛,指个结点,那直接重开吧
2.为啥有的指针没有左右子节点还要指向NULL呢?
其实这个主要是体现代码的严谨,指针如果啥都不指,有时候是会出问题的
也就是咋们俗称的野指针

三种遍历

1.先序遍历根左右
其实就是先遍历根节点,在遍历左子树,最后遍历右子树
在这里插入图片描述
中序遍历(左根右
先找到最的结点,依次往上找例如: 7 : 3 :9,接下来把在7 3 9作为1的也就是:7 3 9 : 1 : 5
后续遍历(左右根
先找到最的结点,依次往上找例如: 7 : 9 :3,接下来把在7 9 3作为1的也就是:7 9 3 : 5 : 1

//先序遍历
PreOrder(TreeNode* T) {
	//递归条件
	if (T == NULL)
		return;
	else {
		//先处理根节点
		printf("%d ", T->data);
		//当前结点的左子树也是树,同样可以使用先序遍历,故左递归
		PreOrder(T->left);
		//当前结点的右子树也是树,同样可以使用先序遍历,故右递归
		PreOrder(T->right);
	}
}

//中序遍历
InOrder(TreeNode* T) {
	//递归条件
	if (T == NULL)
		return;
	else {
		//当前结点的左子树也是树,同样可以使用中序遍历,故左递归
		InOrder(T->left);
		//处理根节点
		printf("%d ", T->data);
		//当前结点的右子树也是树,同样可以使用中序遍历,故右递归
		InOrder(T->right);
	}
}

//后序遍历
PostOrder(TreeNode* T) {
	//递归条件
	if (T == NULL)
		return;
	else {
		//当前结点的左子树也是树,同样可以使用后序遍历,故左递归
		PostOrder(T->left);
		//当前结点的右子树也是树,同样可以使用后序遍历,故右递归
		PostOrder(T->right);
		//处理根节点
		printf("%d ", T->data);
	}
}

三者大体相同,就是执行的顺序不一致
如何理解递归,以及递归的实际运用有哪些,我们下回分解
附上全部代码

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<stdlib.h>
//创建结构体
typedef struct TreeNode {
	int data;//数据域
	struct TreeNode* left;//指向当前结点左子树的指针
	struct TreeNode* right;//指向当前结点右子树的指针
}TreeNode;

//先序遍历
PreOrder(TreeNode* T) {
	//递归条件
	if (T == NULL)
		return;
	else {
		//先处理根节点
		printf("%d ", T->data);
		//当前结点的左子树也是树,同样可以使用先序遍历,故左递归
		PreOrder(T->left);
		//当前结点的右子树也是树,同样可以使用先序遍历,故右递归
		PreOrder(T->right);
	}
}

//中序遍历
InOrder(TreeNode* T) {
	//递归条件
	if (T == NULL)
		return;
	else {
		//当前结点的左子树也是树,同样可以使用中序遍历,故左递归
		InOrder(T->left);
		//处理根节点
		printf("%d ", T->data);
		//当前结点的右子树也是树,同样可以使用中序遍历,故右递归
		InOrder(T->right);
	}
}

//后序遍历
PostOrder(TreeNode* T) {
	//递归条件
	if (T == NULL)
		return;
	else {
		//当前结点的左子树也是树,同样可以使用后序遍历,故左递归
		PostOrder(T->left);
		//当前结点的右子树也是树,同样可以使用后序遍历,故右递归
		PostOrder(T->right);
		//处理根节点
		printf("%d ", T->data);
	}
}
int main() {
	TreeNode n1;
	TreeNode n2;
	TreeNode n3;
	TreeNode n4;
	n1.data = 1;
	n2.data = 3;
	n3.data = 5;
	n4.data = 7;
	n1.left = &n2;
	n1.right = &n3;
	n2.left = &n4;
	n2.right = NULL;
	n3.left = NULL;
	n3.right = NULL;
	n4.left = NULL;
	n4.right = NULL;
	printf("先序遍历为:");
	PreOrder(&n1);
	printf("\n");
	printf("中序遍历为:");
	InOrder(&n1);
	printf("\n");
	printf("后序遍历为:");
	PostOrder(&n1);
	return 0;
}

在这里插入图片描述

C语言中,二叉树是一种常见的数据结构,用于表示元素间的关联。创建遍历二叉树通常包括以下几个步骤: **创建二叉树**: 1. 定义节点结构体:包含整型的数据域和两个指向子节点的指针,通常是左孩子和右孩子。 ```c typedef struct TreeNode { int data; struct TreeNode* left; struct TreeNode* right; } Node; ``` 2. 创建函数,如`insertNode`或`buildTree`,通过递归或迭代方式插入新节点并调整子树结构。 **遍历二叉树**: 1. **前序遍历** (根-左-右):先访问根节点,然后递归地访问左子树,最后右子树。 ```c void preorder(Node* root) { if (root != NULL) { printf("%d ", root->data); // 访问根 preorder(root->left); // 左子树 preorder(root->right); // 右子树 } } ``` 2. **中序遍历** (左-根-右):先遍历左子树,再访问根节点,最后右子树。 ```c void inorder(Node* root) { if (root != NULL) { inorder(root->left); printf("%d ", root->data); // 访问根 inorder(root->right); } } ``` 3. **后序遍历** (左-右-根):先左右子树,再访问根节点。 ```c void postorder(Node* root) { if (root != NULL) { postorder(root->left); postorder(root->right); printf("%d ", root->data); // 访问根 } } ``` 4. **层次遍历**(广度优先搜索):使用队列辅助,逐层从上到下访问。 ```c void levelOrder(Node* root) { if (root == NULL) return; queue<Node*> q; q.push(root); while (!q.empty()) { Node* node = q.front(); q.pop(); printf("%d ", node->data); if (node->left) q.push(node->left); if (node->right) q.push(node->right); } } ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值