一、Canny
1.算法介绍
- Canny是边缘检测算法,在1986年提出的。
- 是一个很好的边缘检测器
2.非最大信号抑制
3.高低阈值输出二值图像
- T1, T2为阈值,凡是高于T2的都保留,凡是小于T1都丢弃,从高于T2的像素出发,凡是大于T1而且相互连接的,都保留。最终得到一个输出二值图像。
- 推荐的高低阈值比值为 T2: T1 = 3:1/2:1其中T2为高阈值,T1为低阈值
二、处理步骤
- 高斯模糊 - GaussianBlur
- 灰度转换 - cvtColor
- 计算梯度 – Sobel/Scharr
- 非最大信号抑制
- 高低阈值输出二值图像
三、相关API
cv::Canny
Canny(
InputArray src, // 8-bit的输入图像
OutputArray edges,// 输出边缘图像, 一般都是二值图像,背景是黑色
double threshold1,// 低阈值,常取高阈值的1/2或者1/3
double threshold2,// 高阈值
int aptertureSize,// Soble算子的size,通常3x3,取值3
bool L2gradient // 选择 true表示是L2来归一化,否则用L1归一化
)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lUwO6ivu-1585997718043)(C:\Users\ThinkPad\AppData\Roaming\Typora\typora-user-images\image-20200404184738810.png)]
默认情况一般选择是L1,参数设置为false
四、综合例程
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
Mat src, gray_src, dst;
int t1_value = 50;
int max_value = 255;
const char* OUTPUT_TITLE = "Canny Result";
void Canny_Demo(int, void*);
int main(int argc, char** argv) {
src = imread("D:/vcprojects/images/lena.png");
if (!src.data) {
printf("could not load image...\n");
return -1;
}
char INPUT_TITLE[] = "input image";
namedWindow(INPUT_TITLE, CV_WINDOW_AUTOSIZE);
namedWindow(OUTPUT_TITLE, CV_WINDOW_AUTOSIZE);
imshow(INPUT_TITLE, src);
cvtColor(src, gray_src, CV_BGR2GRAY);
createTrackbar("Threshold Value:", OUTPUT_TITLE, &t1_value, max_value, Canny_Demo);
Canny_Demo(0, 0);
waitKey(0);
return 0;
}
void Canny_Demo(int, void*) {
Mat edge_output;
blur(gray_src, gray_src, Size(3, 3), Point(-1, -1), BORDER_DEFAULT);
Canny(gray_src, edge_output, t1_value, t1_value * 2, 3, false);
//dst.create(src.size(), src.type());
//src.copyTo(dst, edge_output);
// (edge_output, edge_output);
imshow(OUTPUT_TITLE, ~edge_output);
}