Day 19
654. 最大二叉树
class Solution {
public:
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
return construct(nums, 0, nums.size() - 1);
}
TreeNode* construct(const vector<int>& nums, int left, int right) {
if (left > right) {
return nullptr;
}
int best = left;
for (int i = left + 1; i <= right; ++i) {
if (nums[i] > nums[best]) {
best = i;
}
}
TreeNode* node = new TreeNode(nums[best]);
node->left = construct(nums, left, best - 1);
node->right = construct(nums, best + 1, right);
return node;
}
};
最简单的方法是直接按照题目描述进行模拟。
我们用递归函数 construct(nums,left,right) 表示对数组 nums 中从 nums[left] 到 nums[right] 的元素构建一棵树。我们首先找到这一区间中的最大值,记为 nums 中从 nums[best],这样就确定了根节点的值。随后我们就可以进行递归:
-
左子树为 construct(nums,left,best−1);
-
右子树为 construct(nums,best+1,right);
当递归到一个无效的区间(即 left>right)时,便可以返回一棵空的树
java版:
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
return construct(nums, 0, nums.length - 1);
}
public TreeNode construct(int[] nums, int left, int right) {
if (left > right) {
return null;
}
int best = left;
for (int i = left + 1; i <= right; ++i) {
if (nums[i] > nums[best]) {
best = i;
}
}
TreeNode node = new TreeNode(nums[best]);
node.left = construct(nums, left, best - 1);
node.right = construct(nums, best + 1, right);
return node;
}
}
617. 合并二叉树
class Solution {
public:
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
if (t1 == nullptr) {
return t2;
}
if (t2 == nullptr) {
return t1;
}
auto merged = new TreeNode(t1->val + t2->val);
merged->left = mergeTrees(t1->left, t2->left);
merged->right = mergeTrees(t1->right, t2->right);
return merged;
}
};
可以使用深度优先搜索合并两个二叉树。从根节点开始同时遍历两个二叉树,并将对应的节点进行合并。
两个二叉树的对应节点可能存在以下三种情况,对于每种情况使用不同的合并方式。
-
如果两个二叉树的对应节点都为空,则合并后的二叉树的对应节点也为空;
-
如果两个二叉树的对应节点只有一个为空,则合并后的二叉树的对应节点为其中的非空节点;
-
如果两个二叉树的对应节点都不为空,则合并后的二叉树的对应节点的值为两个二叉树的对应节点的值之和,此时需要显性合并两个节点。
对一个节点进行合并之后,还要对该节点的左右子树分别进行合并。这是一个递归的过程。
java版:
class Solution {
public TreeNode mergeTrees(TreeNode t1, TreeNode t2) {
if (t1 == null) {
return t2;
}
if (t2 == null) {
return t1;
}
TreeNode merged = new TreeNode(t1.val + t2.val);
merged.left = mergeTrees(t1.left, t2.left);
merged.right = mergeTrees(t1.right, t2.right);
return merged;
}
}
700. 二叉搜索树中的搜索
class Solution {
public:
TreeNode *searchBST(TreeNode *root, int val) {
if (root == nullptr) {
return nullptr;
}
if (val == root->val) {
return root;
}
return searchBST(val < root->val ? root->left : root->right, val);
}
};
二叉搜索树满足如下性质:
- 左子树所有节点的元素值均小于根的元素值。
- 右子树所有节点的元素值均大于根的元素值。
据此可以得到如下算法:
- 若 root 为空则返回空节点
-
若 val=root.val,则返回 root
-
若 val<root.val,递归左子树
-
若 val>root.val,递归右子树
java版:
class Solution {
public TreeNode searchBST(TreeNode root, int val) {
if (root == null) {
return null;
}
if (val == root.val) {
return root;
}
return searchBST(val < root.val ? root.left : root.right, val);
}
}
98. 验证二叉搜索树
class Solution {
public:
bool helper(TreeNode* root, long long lower, long long upper) {
if (root == nullptr) {
return true;
}
if (root -> val <= lower || root -> val >= upper) {
return false;
}
return helper(root -> left, lower, root -> val) && helper(root -> right, root -> val, upper);
}
bool isValidBST(TreeNode* root) {
return helper(root, LONG_MIN, LONG_MAX);
}
};
要解决这道题首先我们要了解二叉搜索树有什么性质可以给我们利用,由题目给出的信息我们可以知道:如果该二叉树的左子树不为空,则左子树上所有节点的值均小于它的根节点的值; 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;它的左右子树也为二叉搜索树。
这启示我们设计一个递归函数 helper(root, lower, upper) 来递归判断,函数表示考虑以 root 为根的子树,判断子树中所有节点的值是否都在 (l,r) 的范围内(注意是开区间)。如果 root 节点的值 val 不在 (l,r)(l,r)(l,r) 的范围内说明不满足条件直接返回,否则我们要继续递归调用检查它的左右子树是否满足,如果都满足才说明这是一棵二叉搜索树。
那么根据二叉搜索树的性质,在递归调用左子树时,我们需要把上界 upper 改为 root.val,即调用 helper(root.left, lower, root.val),因为左子树里所有节点的值均小于它的根节点的值。同理递归调用右子树时,我们需要把下界 lower 改为 root.val,即调用 helper(root.right, root.val, upper)。
函数递归调用的入口为 helper(root, -inf, +inf), inf 表示一个无穷大的值
java版:
class Solution {
public boolean isValidBST(TreeNode root) {
return isValidBST(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
public boolean isValidBST(TreeNode node, long lower, long upper) {
if (node == null) {
return true;
}
if (node.val <= lower || node.val >= upper) {
return false;
}
return isValidBST(node.left, lower, node.val) && isValidBST(node.right, node.val, upper);
}
}