免费馅饼
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 33557 Accepted Submission(s): 11476
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中其中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0<n<100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0<T<100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。
Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6 5 1 4 1 6 1 7 2 7 2 8 3 0
Sample Output
4
题目分析:
简单dp。状态表示:dp[i][j]表示在第i秒钟第j个位置上的最大馅饼数,所有t秒x位置初始化为1,由于从i=0开始接下来数秒的馅饼掉落位置未知,故从i=T(max)开始从后往前dp。
状态转移:dp[i][j]=max(dp[i+1][j-1],dp[i+1][j],dp[i+1][j+1]), 始末位置保护防止越界。
代码:
#include <iostream>
#include <sstream>
#include <ios>
#include <iomanip>
#include <functional>
#include <algorithm>
#include <vector>
#include <string>
#include <list>
#include <queue>
#include <deque>
#include <stack>
#include <set>
#include <map>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <climits>
#include <cctype>
using namespace std;
#define XINF INT_MAX
#define INF 0x3FFFFFFF
#define MP(X,Y) make_pair(X,Y)
#define PB(X) push_back(X)
#define REP(X,N) for(int X=0;X<N;X++)
#define REP2(X,L,R) for(int X=L;X<=R;X++)
#define DEP(X,R,L) for(int X=R;X>=L;X--)
#define CLR(A,X) memset(A,X,sizeof(A))
#define IT iterator
#define max(a,b) (a>b)?a:b
#define min(a,b) (a<b)?a:b
typedef long long ll;
typedef pair<int,int> PII;
typedef vector<PII> VII;
typedef vector<int> VI;
const int maxn=10001;
int max2(int a,int b,int c)
{
a=a>b?a:b;a=a>c?a:c;
return a;
}
int dp[100001][13];
int main()
{
int n,x,t,max;
while(scanf("%d",&n)!=EOF)
{
if(n==0)
break;
memset(dp,0,sizeof(dp));
max = 0;
while(n--)
{
scanf("%d %d",&x,&t);
dp[t][x]++; //有馅饼位置初始化为1.
max = max>t?max:t;
}
for(int i = max-1; i >= 0; i--) //从后往前逆dp.
{
for(int j = 0; j <= 10; j++)
{
if(j==0)dp[i][j] += max(dp[i+1][j],dp[i+1][j+1]);
else if(j==10) dp[i][j] += max(dp[i+1][j],dp[i+1][j-1]);
else dp[i][j] += max2(dp[i+1][j-1],dp[i+1][j],dp[i+1][j+1]);
}
}
cout<<dp[0][5]<<endl;
}
return 0;
}