C实现拼图逻辑的关键步骤

C实现拼图逻辑的关键步骤

写这篇文章的起因是因为,在CSDN查找了很久关于拼图随机后关于逆序对数判断是否有解的步骤,很多文章都是互相抄袭,知其然而不知其所以然,按照他们所说的逻辑去求逆序对数判断是否有解,基本无法实现真正的拼图随机有解。在深入学习逆序对数对于是否有解的真正逻辑后,想着说发出来给查询的人少走点弯路。(已经完成2x2、3x3、4x4的拼图逻辑)

第一步 降维

拼图游戏的列表类似于以下几种
0 1
2 3

0 1 2
3 4 5
6 7 8

0   1   2   3
4   5   6   7
8   9   10  11
12  13  14  15

声明对应的一维数组,存储即可
//难度等级声明

typedef enum{
	DIFF_TWO	= 4,		//难度二
	DIFF_THREE	= 9,		//难度三
	DIFF_FOUR	= 16,		//难度四
}JIGSAW_PUZZLE_GAME_DIFF_T;

static uint8_t Puzzle_index_Diff2[DIFF_TWO];
static uint8_t Puzzle_index_Diff3[DIFF_THREE];
static uint8_t Puzzle_index_Diff4[DIFF_FOUR];

第二步 随机打乱

按照拼图交互,我这里采用的是最大数字放最后一位固定不参与随机打乱,显示时最大数字不显示,默认空白格。

//Diff是难度,参数为2、3、4
static void Random_handler(void)
{
	for (uint8_t i = 0; i<(Diff*Diff-1);i++)
	{
		uint8_t num = i + rand() % ((Diff*Diff-1) - i); // 取随机数
		uint8_t temp = Get_Puzzle_index(i);
		Set_Index_handler(i,Get_Puzzle_index(num));
		Set_Index_handler(num,temp);
	}
}

第三步 计算逆序对数以判断当前随机数据是否有解

static void No_Solution_Judgment(void)
{
	/*对于一个拼图序列
	如果其逆序数(D)和最大数到空白格之间的步数(M)均为偶数(或奇数)
	则此拼图是有解的*/
	//对于本功能而言,最大数固定在最后一个位置空白格,步数为0即偶数,即逆序数为偶数有解
	
	//逆序对计算要求数据必须都大于0
	for(uint8_t i=0;i<=(Diff*Diff-1);i++)
	{
		Set_Index_handler(i,Get_Puzzle_index(i)+1);
	}
	//逆序对数量计算
	uint8_t count=0;
	//暴力破解法
	for(uint8_t i=0;i<(Diff*Diff-2);i++)
	{
		for(uint8_t j=i+1;j<(Diff*Diff-1);j++)
		{
			if(Get_Puzzle_index(i)>Get_Puzzle_index(j)) count++;
		}
	}
	//逆序对数为奇数
	if(count%2!=0)
	{
		/*将除了空白格之外的最后两个数互相调转位置,可以达到逆序对数+1或-1的效果*/
		uint8_t temp = Get_Puzzle_index(Diff*Diff-3);
		Set_Index_handler(Diff*Diff-3,Get_Puzzle_index(Diff*Diff-2));
		Set_Index_handler(Diff*Diff-2,temp);
		wf_printf_array_jp();
	}

	//还原数据
	for(uint8_t i=0;i<=(Diff*Diff-1);i++)
	{
		Set_Index_handler(i,Get_Puzzle_index(i)-1);
	}
}
内容概要:本文详细探讨了制造业工厂中两条交叉轨道(红色和紫色)上的自动导引车(AGV)调度问题。系统包含2辆红色轨道AGV和1辆紫色轨道AGV,它们需完成100个运输任务。文章首先介绍了AGV系统的背景和目标,即最小化所有任务的完成时间,同时考虑轨道方向性、冲突避免、安全间隔等约束条件。随后,文章展示了Python代码实现,涵盖了轨道网络建模、AGV初始化、任务调度核心逻辑、电池管理和模拟运行等多个方面。为了优化调度效果,文中还提出了冲突避免机制增强、精确轨道建模、充电策略优化以及综合调度算法等改进措施。最后,文章通过可视化与结果分析,进一步验证了调度系统的有效性和可行性。 适合人群:具备一定编程基础和对自动化物流系统感兴趣的工程师、研究人员及学生。 使用场景及目标:①适用于制造业工厂中多AGV调度系统的开发与优化;②帮助理解和实现复杂的AGV调度算法,提高任务完成效率和系统可靠性;③通过代码实例学习如何构建和优化AGV调度模型,掌握冲突避免、路径规划和电池管理等关键技术。 其他说明:此资源不仅提供了详细的代码实现和理论分析,还包括了可视化工具和性能评估方法,使读者能够在实践中更好地理解和应用AGV调度技术。此外,文章还强调了任务特征分析的重要性,并提出了基于任务特征的动态调度策略,以应对高峰时段和卸载站拥堵等情况。
内容概要:本文介绍了一个使用MATLAB编写的基于FDTD(时域有限差分)方法的电磁波在自由空间中传播的仿真系统。该系统采用了ABC(吸收边界条件)和正弦脉冲激励源,并附有详细的代码注释。文中首先介绍了关键参数的选择依据及其重要性,如空间步长(dx)和时间步长(dt),并解释了它们对算法稳定性和精度的影响。接着阐述了电场和磁场的初始化以及Yee网格的布局方式,强调了电场和磁场分量在网格中的交错排列。然后详细讲解了吸收边界的实现方法,指出其简单而有效的特性,并提醒了调整衰减系数时需要注意的问题。最后,描述了正弦脉冲激励源的设计思路,包括脉冲中心时间和宽度的选择,以及如何将高斯包络与正弦振荡相结合以确保频带集中。此外,还展示了时间步进循环的具体步骤,说明了磁场和电场分量的更新顺序及其背后的物理意义。 适合人群:对电磁波传播模拟感兴趣的科研人员、高校学生及工程技术人员,尤其是那些希望深入了解FDTD方法及其具体实现的人群。 使用场景及目标:适用于教学演示、学术研究和技术开发等领域,旨在帮助使用者掌握FDTD方法的基本原理和实际应用,为后续深入研究打下坚实基础。 阅读建议:由于本文涉及较多的专业术语和技术细节,建议读者提前熟悉相关背景知识,如电磁理论、MATLAB编程等。同时,可以通过动手实践代码来加深理解和记忆。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值