用逆序数的奇偶性来判断数字拼图游戏的解的存在性问题

原帖链接:http://topic.csdn.net/u/20080926/23/301801ca-2fe0-4d24-84e3-fbd454be4604.html?291383689

有一个3*3的矩阵,里面分别填着数字0~8,填入的时候是随机的,要求每次只能用0和和边上的一个数字交换,最终实现所要求的数字排列。
如:
随机真数字矩阵为:
1 3 5
0 2 6
4 7 8  0,可以与1,2,4交换
最终变成目标矩阵
1 2 3
8 0 4
7 6 5
中间可进行无限次0与其他数字的交换。
问:
任意给一个数字矩阵,能否证明:经过无限次的交换,一定能到达目标矩阵或者经过无限的交换也不能实现目标矩阵?
如果没说清楚,请跟贴
解决问题,再追加300分

 

这是一个3*3的数字拼图游戏;

考虑更一般化的问题:对于两任意排列的m*n的数字矩阵(两矩阵包含有相同的元素,都为分别为0--n*m-1,但排列顺序不同)A与B,如何判断A能否经过一系列的合法的移动(每次只能用0和和边上的一个数字交换),转换成B;

 

这是一个经典的问题,用逆序数的奇偶性来判断数字拼图游戏的解的存在性也早有定论;

但我没找到详细的证明;因此自己尝试给出一个通俗的证明

  • 10
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 10
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值