LeetCode51 N皇后

首先我们需要知道该怎么样放置皇后,观察题目可以看到,在每一行或者说每一列都一个皇后,而且如果在某个位置有皇后,那么她所在的行和列,以及对角线上的位置都不能有皇后。

因此我们的思想借助回溯和递归的思想,首先在第一行的某个位置放置一个皇后,然后开始在下一行的找是否有合适位置(递归),如果到达了最后一行的位置,则说明已经找到了一种放置方法,将此方法记录。找到之后,又回溯,把所有位置恢复为原来的状态,从第一行的下一个位置(即下一列)开始递归....直到所有的列位置都遍历到,结束程序。

代码如下:

class Solution {
public:
    vector<vector<string>> solveNQueens(int n) {
    string stemp(n,'.');
    vector<string> Queen(n,stemp);
    dfs(Queen,0);//从第一行开始
    return res;
    }
    void dfs(vector<string>& Queen,int row)
    {
        if(row==Queen.size()){//已经找到了一种放置方法
            res.push_back(Queen);
            return;
        }
      int n=Queen.size();
      for(int col=0;col<n;col++){
          if(valid(Queen,row,col)){
             Queen[row][col]='Q';
              dfs(Queen,row+1);  //进行下一行的搜索,保证每行只有一个'Q'
             Queen[row][col]='.';
          }
        }
    }
    bool valid(vector<string>& Queen,int row,int col)
    {//因为我们是从上往下放置皇后,因此只需要验证之前的位置是否有皇后即可
                   for(int i=0;i<row;i++){//验证是否在同一列还有其他皇后
                       if(Queen[i][col]=='Q'){
                           return false;
                       }
                   }
                   for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--) {//验证左上角的元素
                       if(Queen[i][j]=='Q'){
                           return false;
                        }
                   }
                    for(int i=row-1,j=col+1;i>=0&&j<Queen.size();i--,j++) {//验证右上角的元素
                       if(Queen[i][j]=='Q'){
                           return false;
                        }
               }
        return true;
    }
    private:
         vector<vector<string> > res;
};

有没有更简便的方法呢,这里我们可以对皇后位置的有效性判断做些优化。

 可以用一个一维数组来记录每行中那个皇后所在的列,因此该数组长度应该为n。如果可以放皇后,就把此位置处的列记录在此数组,用完后又恢复为-1。我们注意到左上对角线和右对角线上的元素都一个共有性质,那就是到此位置的横向距离和纵向距离相等,依据这一性质,可以将皇后位置的有效性判断统一并简化。代码如下:

class Solution {
public:
    vector<vector<string>> solveNQueens(int n) {
    int* posQ=new int [n];  //posOfQueen[i]表示i行皇后的位置(所在的列)
    dfs(posQ,0,n);//从第一行开始
    delete [] posQ;
    return ves;
    }
    void dfs(int* posQ,int row,int n)
    {
        if(row==n){//已经找到了一种放置方法
            vector<string> vtemp(n,string(n,'.'));
            for(int i=0;i<n;i++){
                vtemp[i][posQ[i]]='Q';
            }
            ves.push_back(vtemp);
            return;
        }
      for(int col=0;col<n;col++){
          if(valid(posQ,row,col)){
             posQ[row]=col;
              dfs(posQ,row+1,n);  //进行下一行的搜索,保证每行只有一个'Q'
             posQ[row]=-1;
          }
        }
    }
    bool valid(int* posQ,int row,int col)
    {
                   for(int i=0;i<row;i++){//是否还有其他皇后
                       if(posQ[i]==col||abs(row-i)==abs(col-posQ[i])){//前面的部分表示同一列是否有皇后,后面的部分表示对角线上的位置是否还有皇后
                           return false;
                       }
                      }
        return true;
    }
    private:
         vector<vector<string> > ves;
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值