首先我们需要知道该怎么样放置皇后,观察题目可以看到,在每一行或者说每一列都一个皇后,而且如果在某个位置有皇后,那么她所在的行和列,以及对角线上的位置都不能有皇后。
因此我们的思想借助回溯和递归的思想,首先在第一行的某个位置放置一个皇后,然后开始在下一行的找是否有合适位置(递归),如果到达了最后一行的位置,则说明已经找到了一种放置方法,将此方法记录。找到之后,又回溯,把所有位置恢复为原来的状态,从第一行的下一个位置(即下一列)开始递归....直到所有的列位置都遍历到,结束程序。
代码如下:
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
string stemp(n,'.');
vector<string> Queen(n,stemp);
dfs(Queen,0);//从第一行开始
return res;
}
void dfs(vector<string>& Queen,int row)
{
if(row==Queen.size()){//已经找到了一种放置方法
res.push_back(Queen);
return;
}
int n=Queen.size();
for(int col=0;col<n;col++){
if(valid(Queen,row,col)){
Queen[row][col]='Q';
dfs(Queen,row+1); //进行下一行的搜索,保证每行只有一个'Q'
Queen[row][col]='.';
}
}
}
bool valid(vector<string>& Queen,int row,int col)
{//因为我们是从上往下放置皇后,因此只需要验证之前的位置是否有皇后即可
for(int i=0;i<row;i++){//验证是否在同一列还有其他皇后
if(Queen[i][col]=='Q'){
return false;
}
}
for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--) {//验证左上角的元素
if(Queen[i][j]=='Q'){
return false;
}
}
for(int i=row-1,j=col+1;i>=0&&j<Queen.size();i--,j++) {//验证右上角的元素
if(Queen[i][j]=='Q'){
return false;
}
}
return true;
}
private:
vector<vector<string> > res;
};
有没有更简便的方法呢,这里我们可以对皇后位置的有效性判断做些优化。
可以用一个一维数组来记录每行中那个皇后所在的列,因此该数组长度应该为n。如果可以放皇后,就把此位置处的列记录在此数组,用完后又恢复为-1。我们注意到左上对角线和右对角线上的元素都一个共有性质,那就是到此位置的横向距离和纵向距离相等,依据这一性质,可以将皇后位置的有效性判断统一并简化。代码如下:
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
int* posQ=new int [n]; //posOfQueen[i]表示i行皇后的位置(所在的列)
dfs(posQ,0,n);//从第一行开始
delete [] posQ;
return ves;
}
void dfs(int* posQ,int row,int n)
{
if(row==n){//已经找到了一种放置方法
vector<string> vtemp(n,string(n,'.'));
for(int i=0;i<n;i++){
vtemp[i][posQ[i]]='Q';
}
ves.push_back(vtemp);
return;
}
for(int col=0;col<n;col++){
if(valid(posQ,row,col)){
posQ[row]=col;
dfs(posQ,row+1,n); //进行下一行的搜索,保证每行只有一个'Q'
posQ[row]=-1;
}
}
}
bool valid(int* posQ,int row,int col)
{
for(int i=0;i<row;i++){//是否还有其他皇后
if(posQ[i]==col||abs(row-i)==abs(col-posQ[i])){//前面的部分表示同一列是否有皇后,后面的部分表示对角线上的位置是否还有皇后
return false;
}
}
return true;
}
private:
vector<vector<string> > ves;
};