摘花生

问题描述:

Hello Kitty想摘点花生送给她喜欢的米老鼠。

她来到一片有网格状道路的矩形花生地(如下图),从西北角进去,东南角出来。

地里每个道路的交叉点上都有种着一株花生苗,上面有若干颗花生,经过一株花生苗就能摘走该它上面所有的花生。

Hello Kitty只能向东或向南走,不能向西或向北走。

问Hello Kitty最多能够摘到多少颗花生。

输入格式:

第一行是一个整数T,代表一共有多少组数据。

接下来是T组数据。

每组数据的第一行是两个整数,分别代表花生苗的行数R和列数 C。

每组数据的接下来R行数据,从北向南依次描述每行花生苗的情况。每行数据有C个整数,按从西向东的顺序描述了该行每株花生苗上的花生数目M。

输出格式:

对每组输入数据,输出一行,内容为Hello Kitty能摘到得最多的花生颗数。

数据范围:

 

1≤T≤100
1≤R,C≤100
0≤M≤1000

输入样例:

2
2 2
1 1
3 4
2 3
2 3 4
1 6 5

输出样例:

8
16

基本思路:

  • 算法思想:动态规划(DP)
  • 状态转移方程: f[ i ][ j ] = max(f[ i - 1][ j ] + m[ i ][ j ], f[ i ][ j - 1 ] + m[ i ][ j ])

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 110;

int f[N][N], m[N][N];
int r, c;

int main(){
    int t;
    cin >> t;

    while(t -- ){
        cin >> r >> c;

        for(int i = 1; i <= r; i ++ )
            for(int j = 1; j <= c; j ++ )
                cin >> m[i][j];

        for(int i = 1; i <= r; i ++ )
            for(int j = 1; j <= c; j ++ )
                f[i][j] = max(f[i - 1][j] + m[i][j], f[i][j - 1] + m[i][j]);

        cout << f[r][c] << endl;
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值