度度熊的交易计划
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 374 Accepted Submission(s): 122
Problem Description
度度熊参与了喵哈哈村的商业大会,但是这次商业大会遇到了一个难题:
喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区。
由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但是最多生产b[i]个。
同样的,由于每个片区的购买能力的区别,第i个片区也能够以c[i]的价格出售最多d[i]个物品。
由于这些因素,度度熊觉得只有合理的调动物品,才能获得最大的利益。
据测算,每一个商品运输1公里,将会花费1元。
那么喵哈哈村最多能够实现多少盈利呢?
喵哈哈村以及周围的村庄可以看做是一共由n个片区,m条公路组成的地区。
由于生产能力的区别,第i个片区能够花费a[i]元生产1个商品,但是最多生产b[i]个。
同样的,由于每个片区的购买能力的区别,第i个片区也能够以c[i]的价格出售最多d[i]个物品。
由于这些因素,度度熊觉得只有合理的调动物品,才能获得最大的利益。
据测算,每一个商品运输1公里,将会花费1元。
那么喵哈哈村最多能够实现多少盈利呢?
Input
本题包含若干组测试数据。
每组测试数据包含:
第一行两个整数n,m表示喵哈哈村由n个片区、m条街道。
接下来n行,每行四个整数a[i],b[i],c[i],d[i]表示的第i个地区,能够以a[i]的价格生产,最多生产b[i]个,以c[i]的价格出售,最多出售d[i]个。
接下来m行,每行三个整数,u[i],v[i],k[i],表示该条公路连接u[i],v[i]两个片区,距离为k[i]
可能存在重边,也可能存在自环。
满足:
1<=n<=500,
1<=m<=1000,
1<=a[i],b[i],c[i],d[i],k[i]<=1000,
1<=u[i],v[i]<=n
每组测试数据包含:
第一行两个整数n,m表示喵哈哈村由n个片区、m条街道。
接下来n行,每行四个整数a[i],b[i],c[i],d[i]表示的第i个地区,能够以a[i]的价格生产,最多生产b[i]个,以c[i]的价格出售,最多出售d[i]个。
接下来m行,每行三个整数,u[i],v[i],k[i],表示该条公路连接u[i],v[i]两个片区,距离为k[i]
可能存在重边,也可能存在自环。
满足:
1<=n<=500,
1<=m<=1000,
1<=a[i],b[i],c[i],d[i],k[i]<=1000,
1<=u[i],v[i]<=n
Output
输出最多能赚多少钱。
Sample Input
2 1 5 5 6 1 3 5 7 7 1 2 1
Sample Output
23
Source
——————————————————————————————————
思路:先最短路算出点两两之间的盈利量。然后把每个点拆成2个点x1,x2,源点与每个x1[i]相连,容量为b[i],费用为0;汇点与每个x2[i]相连,容量为d[i],费用为0;
x1[i]和x2[j]若盈利非负则连流量为无穷,费用为盈利的相反数,求最大费用可行流即可,求解就是在最小费用时,如果答案应景最小,则不再增广直接return;
include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
const int MAXN=5005;
const int MAXM=1000100 ;
int n, m;
int dis[505], vis[505];
int s[505], nt[2005], e[2005],l[2005];
int mp[505][505];
int a[505], b[505], c[505], d[505];
struct Edge
{
int u, v, c, cost, next;
} edge[MAXM];
int sx[MAXN], cnt;
int visit[MAXN],dd[MAXN],pr[MAXN],aa[MAXN];
struct node
{
int id, dis;
bool operator<(const node &a)const
{
return dis > a.dis;
}
}pre,nt1;
void Dijkstra(int ss)
{
priority_queue<node>q;
memset(vis, 0, sizeof vis);
memset(dis, INF, sizeof dis);
dis[ss] = 0;
pre.id = ss, pre.dis = 0;
q.push(pre);
while (!q.empty())
{
pre = q.top();
q.pop();
vis[pre.id] = 1;
for (int i = s[pre.id ]; ~i; i = nt[i])
{
if (vis[e[i]]) continue;
if (dis[e[i]] > dis[pre.id] + l[i])
{
dis[e[i]] = min(dis[e[i]], dis[pre.id ] + l[i]);
nt1.id = e[i], nt1.dis = dis[e[i]];
q.push(nt1);
}
}
}
for (int i = 1; i <= n; i++) mp[ss][i] = dis[i];
}
void init()
{
cnt = 0;
memset(sx, -1, sizeof(sx));
}
void add(int u, int v, int c, int cost)
{
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].cost = cost;
edge[cnt].c = c;
edge[cnt].next = sx[u];
sx[u] = cnt++;
edge[cnt].u = v;
edge[cnt].v = u;
edge[cnt].cost = -cost;
edge[cnt].c = 0;
edge[cnt].next = sx[v];
sx[v] = cnt++;
}
bool spfa(int ss, int ee,int &flow,int &cost)
{
queue<int> q;
memset(dd, INF, sizeof dd);
memset(visit, 0, sizeof visit);
dd[ss] = 0, visit[ss] = 1, pr[ss] = 0, aa[ss] = INF;
q.push(ss);
while (!q.empty())
{
int u = q.front();q.pop();
visit[u] = 0;
for (int i = sx[u]; ~i; i = edge[i].next)
{
int v = edge[i].v;
if (edge[i].c>0&& dd[v]>dd[u] + edge[i].cost)
{
dd[v] = dd[u] + edge[i].cost;
pr[v] = i;
aa[v] = min(aa[u], edge[i].c);
if (!visit[v])
{
visit[v] = 1;
q.push(v);
}
}
}
}
if (dd[ee] == INF) return 0;
if(cost + dd[ee]*aa[ee]>cost)
return 0;
flow += aa[ee];
cost += dd[ee]*aa[ee];
int u = ee;
while (u != ss)
{
edge[pr[u]].c -= aa[ee];
edge[pr[u] ^ 1].c += aa[ee];
u = edge[pr[u]].u;
}
return 1;
}
int MCMF(int ss, int ee)
{
int cost = 0, flow=0;
while (spfa(ss, ee, flow, cost));
return cost;
}
int main()
{
while (~scanf("%d%d", &n, &m))
{
memset(s, -1, sizeof s);
cnt = 0;
for (int i = 1; i <= n; i++) scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]);
for (int i = 1; i <= m; i++)
{
int u, v, k;
scanf("%d%d%d", &u, &v, &k);
if(u==v)
continue;
nt[cnt] = s[u], s[u] = cnt, e[cnt] = v, l[cnt++] = k;
nt[cnt] = s[v], s[v] = cnt, e[cnt] = u, l[cnt++] = k;
}
for (int i = 1; i <= n; i++) Dijkstra(i);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
mp[i][j] = c[j]- a[i] - mp[i][j];
init();
for(int i=1;i<=n;i++)
add(0,i,b[i],0),add(i+n,2*n+1,d[i],0);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(mp[i][j]>0)
add(i,j+n,INF,-mp[i][j]);
printf("%d\n",-MCMF(0,2*n+1));
}
return 0;
}