题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6118
问题的重点在于,如何处理出生产的产品达不到上界的情况,我们考虑将一个点拆成一个生产的点和一个销售的点,然后,对于每一个生产的点,建一个流量为b,价格为-a的到汇点的边,这样就可以处理上述的情况,对于公路只要在所有的销售的点之间建边即可。
代码:
#include<bits/stdc++.h>
using namespace std;
const int MAXN=2000;
const int MAXM=1e5;
const int INF=0x3f3f3f3f;
namespace MCMF
{
struct Edge
{
int to,next,cap,flow,cost;
}edge[MAXM];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
N=n;
tol=0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
edge[tol].to=v;edge[tol].cap=cap;edge[tol].cost=cost;edge[tol].flow=0;edge[tol].next=head[u];
head[u]=tol++;
edge[tol].to=u;edge[tol].cap=0;edge[tol].cost=-cost;edge[tol].flow=0;edge[tol].next=head[v];
head[v]=tol++;
}
bool spfa(int s,int t)
{
queue<int>q;
for(int i=0;i<N;i++)
{
dis[i]=INF;
vis[i]=false;
pre[i]=-1;
}
dis[s]=0;
vis[s]=true;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=false;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost)
{
dis[v]=dis[u]+edge[i].cost;
pre[v]=i;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
if(pre[t]==-1)
return false;
else
return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s,int t,int &cost)
{
int flow=0;
cost=0;
while(spfa(s,t))
{
int Min=INF;
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min=edge[i].cap-edge[i].flow;
}
for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
{
edge[i].flow+=Min;
edge[i^1].flow-=Min;
cost+=edge[i].cost*Min;
}
flow+=Min;
}
return flow;
}
}
struct node
{
int a,b,c,d;
}sv[MAXN];
int n,m;
void solve()
{
MCMF::init(2*n+2);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&sv[i].a,&sv[i].b,&sv[i].c,&sv[i].d);
}
for(int i=1;i<=m;i++)
{
int u,k,v;
scanf("%d%d%d",&u,&v,&k);
MCMF::addedge(2*u-1,2*v-1,INF,k);
MCMF::addedge(2*v-1,2*u-1,INF,k);
}
for(int i=1;i<=n;i++)
{
MCMF::addedge(0,2*i,sv[i].b,sv[i].a);
MCMF::addedge(2*i-1,2*n+1,sv[i].d,-sv[i].c);
MCMF::addedge(2*i,2*n+1,sv[i].b,-sv[i].a);
MCMF::addedge(2*i,2*i-1,INF,0);
}
int cost=0;
MCMF::minCostMaxflow(0,2*n+1,cost);
printf("%d\n",-cost);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
solve();
}
}