HDU 6118 度度熊的交易计划(费用流)

本文介绍了一种解决产品生产和销售网络中最小费用最大流问题的方法。通过将每个节点拆分为生产点和销售点,并建立相应的流量和成本边,利用SPFA算法寻找增广路径,实现了最小费用的最大流。代码示例使用C++编写。
摘要由CSDN通过智能技术生成

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6118


问题的重点在于,如何处理出生产的产品达不到上界的情况,我们考虑将一个点拆成一个生产的点和一个销售的点,然后,对于每一个生产的点,建一个流量为b,价格为-a的到汇点的边,这样就可以处理上述的情况,对于公路只要在所有的销售的点之间建边即可。


代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXN=2000;
const int MAXM=1e5;
const int INF=0x3f3f3f3f;
namespace MCMF
{
	struct Edge
	{
		int to,next,cap,flow,cost;
	}edge[MAXM];
	int head[MAXN],tol;
	int pre[MAXN],dis[MAXN];
	bool vis[MAXN];
	int N;//节点总个数,节点编号从0~N-1
	void init(int n)
	{
		N=n;
		tol=0;
		memset(head,-1,sizeof(head));
	}
	void addedge(int u,int v,int cap,int cost)
	{
		edge[tol].to=v;edge[tol].cap=cap;edge[tol].cost=cost;edge[tol].flow=0;edge[tol].next=head[u];
		head[u]=tol++;
		edge[tol].to=u;edge[tol].cap=0;edge[tol].cost=-cost;edge[tol].flow=0;edge[tol].next=head[v];
		head[v]=tol++;
	}
	bool spfa(int s,int t) 
	{ 
		queue<int>q;
		for(int i=0;i<N;i++)
		{
			dis[i]=INF;
			vis[i]=false;
			pre[i]=-1;
		}
		dis[s]=0;
		vis[s]=true;
		q.push(s);
		while(!q.empty())
		{
			int u=q.front();
			q.pop();
			vis[u]=false;
			for(int i=head[u];i!=-1;i=edge[i].next)
			{
				int v=edge[i].to;
				if(edge[i].cap>edge[i].flow&&dis[v]>dis[u]+edge[i].cost)
				{
					dis[v]=dis[u]+edge[i].cost;
					pre[v]=i;
					if(!vis[v])
					{
						vis[v]=true;
						q.push(v);
					}
				}
			}
		}
		if(pre[t]==-1)
			return false;
		else
			return true;
	}
	//返回的是最大流,cost存的是最小费用 
	int minCostMaxflow(int s,int t,int &cost)
	{
		int flow=0;
		cost=0;
		while(spfa(s,t))
		{
			int Min=INF;
			for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
			{
				if(Min>edge[i].cap-edge[i].flow)
					Min=edge[i].cap-edge[i].flow;
			}
			for(int i=pre[t];i!=-1;i=pre[edge[i^1].to])
			{
				edge[i].flow+=Min;
				edge[i^1].flow-=Min;
				cost+=edge[i].cost*Min;
			}
			flow+=Min;
		}
		return flow;
	}
}
struct node
{
	int a,b,c,d;
}sv[MAXN];
int n,m;
void solve()
{
	MCMF::init(2*n+2);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d%d%d",&sv[i].a,&sv[i].b,&sv[i].c,&sv[i].d);
	}
	for(int i=1;i<=m;i++)
	{
		int u,k,v;
		scanf("%d%d%d",&u,&v,&k);
		MCMF::addedge(2*u-1,2*v-1,INF,k);
		MCMF::addedge(2*v-1,2*u-1,INF,k);
	}
	for(int i=1;i<=n;i++)
	{
		MCMF::addedge(0,2*i,sv[i].b,sv[i].a);
		MCMF::addedge(2*i-1,2*n+1,sv[i].d,-sv[i].c);
		MCMF::addedge(2*i,2*n+1,sv[i].b,-sv[i].a);
		MCMF::addedge(2*i,2*i-1,INF,0);
	}
	int cost=0;
	MCMF::minCostMaxflow(0,2*n+1,cost);
	printf("%d\n",-cost);
}
int main()
{
	while(~scanf("%d%d",&n,&m))
	{
		solve();
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值