C语言汉诺塔问题:将A柱上按上小下大放置的盘子转移到C柱
#大盘不能盖小盘
#可以使用辅助B柱
思路:
将前n-1个盘子从源柱子经过目标柱子移动到辅助柱子。
将第n个盘子从源柱子移动到目标柱子。
将前n-1个盘子从辅助柱子经过源柱子移动到目标柱子。
由于递归的特性是运行到底层然后开始回溯,所以举例分析:
若n=3:
将前2个盘子从源柱子经过目标柱子移动到辅助柱子。
将第3个盘子从源柱子移动到目标柱子。
将前2个盘子从辅助柱子经过源柱子移动到目标柱子。
将前1个盘子从源柱子经过目标柱子移动到辅助柱子。
将第2个盘子从源柱子移动到目标柱子。
将前1个盘子从辅助柱子经过源柱子移动到目标柱子。
将前0个盘子从源柱子经过目标柱子移动到辅助柱子。
将第1个盘子从源柱子移动到目标柱子。
将前0个盘子从辅助柱子经过源柱子移动到目标柱子。
回溯。
#递归的核心是找到最基础的步骤,不论n的大小,找到最基础的步骤,用递归去做第一步,然后一步一步地回溯,只要基础步骤正确,其他的交给递归。
汉诺塔问题的基础步骤可以从n=2寻找突破口。
程序实现:怎样用C体现?(符号体现)
定义盘的编号:1、2、3、4、……、n,规定盘依次增大;定义柱子的编号:A——源、B——辅助、C——目标。
代码:`#include<stdio.h>
void m(int n,char source,char auxiliary,char target)//递归函数,
{
if(1==n)//最后一次搬,目标是C
{
printf(“move the disk1 from %c to the %c\n”,source,target);
return;
}
m(n-1,source,target,auxiliary);//A是源,B是目标
printf(“move the disk%d from %c to the %c\n”,n,source,target);
m(n-1,auxiliary,source,target);//B是源,A是目标
//搞清每一情况柱子扮演的角色!然后开始递归!
}
int main()
{
int n=0;//定义盘子数量
printf(“enter the number of disks:\n”);
scanf(“%d”,&n);//输入盘子数量
m(n,‘A’,‘B’,‘C’);//传参,定义柱子编号
return 0;
}`
结果: