poj 2411 经典轮廓线dp+位运算

点击打开链接

轮廓线dp特点 : 在一个比较"窄"(行数少或者列数少)的棋盘上进行复杂操作。如过采用传统方法(以整行或者整列为状态)进行规划,
将无法进行状态转移,因此只能把参差不齐的轮廓线也作为状态转移的一部分。

参考:点击打开链接


#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int M =15;
int n,m;
long long dp[2][1<<M]; //dp[cur][s] 以cur为右下角时  cur~cur之前的m-1个方格所表示二进制的状态数s时 填满n*m的方法数 (滚动数组)  
int main()
{
	while(cin>>n>>m&&(n+m))
	{
		if((n*m)%2) //面积为奇数填不满 因为每块小木块面积为偶数  
		{
			cout<<0<<endl;
			continue;
		}
		
	
		if(n<m) swap(n,m); // n*m的方法数等价于m*n的方法数 x=min(n,m)  1<<x使x较小的节省空间 
		int cur=0;
		memset(dp,0,sizeof(dp));
		dp[cur][(1<<m)-1]=1;//
		for(int i=0;i<n;i++)
		{
			for(int j=0;j<m;j++) // 总共 n*m个State 
			{
				cur^=1; //滚动
				memset(dp[cur],0,sizeof(dp[cur]));				
				 
				 
				 
				for(int k=0;k<(1<<m);k++) //枚举前一个state 
				{
					
					
					//(i,j)为右下角
					//(i-1,j) 为0一定要竖着放  为1 若(i,j-1)为0 则可以左放  为1或者0 都可以不放 (留给(i+1,j-1)放) 
					//由此可得 每一行结束 它的上面一行一定是填满的 
					
					
					//同一个state可能有多个k推得 用自加+ 
					//不放 
					if(k&(1<<(m-1))) 
					dp[cur][(k<<1)^(1<<m)]+=dp[1-cur][k];
					
					//左放            !(k&1) 上个阶段最左边为0 
					if(j && (k&(1<<(m-1))) && !(k&1))
					dp[cur][(k<<1)^(1<<m)^3]+=dp[1-cur][k];
					
					//竖放 
					if(i && !(k&(1<<(m-1))))
					dp[cur][(k<<1)^1]+=dp[1-cur][k];
					
					
										
				}
				
			}	
		}
		//每一行结束 它的上面一行一定是填满的 
		cout<<dp[cur][(1<<m)-1]<<endl;	
	}
	
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值