hdu 2204 容斥原理

点击打开链接

以下为参考大牛http://blog.csdn.net/acm_cxlove/article/details/7873776

题目:求出1-N里面能表示 成M^K的数有多少个

求A^B在<=n的最大的A,所以1~A也都满足 
//如果A^B在<=n,那么i^B<=n (A>i>=1)

//因为2^60>1e18所以 B不超过60

另外B考虑质因子,如果A^4在范围内的话,肯定(2*A)^2也在范围内,没有必要重复考虑

指数虽然考虑了质因子,但是我们发现还是有重复,如果说4^3与8^2还是重复了,这是因为他们同为2^6。

我们用Ai表示指数为质因子Pi的数目,那么A1+A2……Ak-(A1交A2)-(A1交A3)……+(A1交A2交A3)……

#include <iostream>
#include <cstring>
#include <vector>
#include <cmath> 
using namespace std;
typedef long long ll;
const int N=1e6+20;
const ll inf=1e12;
vector <int> p; 
ll n,ans; 
bool check(int x)
{
	for(int i=2;i*i<=x;i++)
	if(x%i==0)
	return false;
	
	return true;
}
void dfs(int id,int num,int t,int tot)//num当前指数 ,t当前因子数,tot最多因子数 
{
	if(t==tot)
	{
		ll tmp=ll(pow(n,1.0/num));//求A^B在<=n,最大的A所以1~A也都满足 
		//如果A^B在<=n,那么i^B<=n (A>i>=1) 
		tmp--;// 1^num
		if(tot&1)
		ans+=tmp;
		else
		ans-=tmp;
		
		return;
	}
	if(id>=17) return;
	if(num*p[id]<60)
	dfs(id+1,num*p[id],t+1,tot);
	
	dfs(id+1,num,t,tot);// 
}
int main()
{
	for(int i=2;i<=60;i++)//2^60>1e18 幂在60内 
	{
		if(check(i))
		p.push_back(i);
	}
	while(cin>>n)
	{
		ans=0; 
		for(int i=1;i<=3;i++)//最多因子数为3 2*3*5*7>60 
		dfs(0,1,0,i);
		cout<<ans+1<<endl;	
	} 
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值