Codeforces 768E Game of Stones 博弈SG(打表)

点击打开链接

题意:n堆stone,每堆s[i]个 s[i]<=60,n<=1e6,若从第i堆拿了x个 则第i堆不能再取x个,无法操作则输

找到i个石头的SG值,同样i个,取的石头可能有不同的限制.
设dp[i][j] i表示石子数量 j表示能取的状态的SG值 O(n*2^n*logn) 

最终游戏要求的异或和为:dp[i][2^i-1](i=1~n)  打表找到dp[i](2^i-1)规律即可

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,ll> ii;
const int M=2e6+20;
const int N=70;
map<pair<int,ll>,int> grundy;
map<pair<int,ll>,bool> mp;
int Grundy(int i,ll j)
{
	
	if(mp[ii(i,j)])//该状态grundy已经被计算 
		return grundy[ii(i,j)];
	vector<bool> mk(63,false);
	for(int k=0;k<i;k++)//取k+1个 
	{
		if(((j>>k)&1)==0)//状态j第k位为0,不能取k+1个 
			continue;
		mk[Grundy((i-k-1ll),(j^(1ll<<k)))]=true;
	}
	int ret;
	for(int k=0;k<63;k++)
	{
		if(mk[k]==false)
		{
			grundy[ii(i,j)]=k;
			ret=k;
			break;
		}
	}
	mp[ii(i,j)]=true;
	return ret;
}
void calc()
{
	grundy[ii(0,0)]=0;
	mp[ii(0,0)]=true;
	
	vector<int> gr(70,0);
	for(int i=0;i<=60;i++)
		gr[i]=Grundy(i,(1ll<<i)-1ll),cout<<gr[i]<<' ';
}
int f[N];
int main()
{	
	//calc();
	//规律 2个1,3个2,4个3.(n+1)个n 
	int i=0,cnt=0;
	while(i<=60)
	{
		for(int k=0;k<=cnt;k++)
			f[i++]=cnt;
		cnt++;
	}
	int n;
	while(cin>>n)
	{
		int x,ans=0;
		for(int i=0;i<n;i++)
		{
			scanf("%d",&x);
			ans=ans^f[x];
		}
		if(ans==0)
			puts("YES");//后手win
		else
			puts("NO"); 
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值