POJ 2135 Farm Tour 最小费用流

本文介绍了一种利用最小费用流算法解决特定类型的路径寻找问题的方法。具体而言,对于给定的图,需要找到从起点到终点再返回起点且每条边恰好通过一次的最短路径。通过构建流量网络并设定相应的流量限制与成本,最终转化为求解最小费用流问题。
摘要由CSDN通过智能技术生成

点击打开链接

题意:n个点,m条边,n<=1e3,m<=1e4 问从1出发到达n,在从n回到1并且每条边经过一次的最短路径?
贪心:从1到n找最短路在把路径反向 在从n到1找最短路,非常容易举出反例(样例即可)该贪心是错误的.

因为边为无向边 所以可以转换成求出两条1~n的路径 并且这两条路径无公共边 路径之和最短
建图:每条边流量为1,费用为长度.上面问题就等价于,求从1~n流量为2的最小费用流 

#include <iostream>
#include <algorithm>
#include <cstring>
#include <queue>
#include <cstdio>
using namespace std;
const int N=2e5+20;
const int inf=2e8;
int n,m;
int head[N],num;
struct node{
	int to,next,vol,cost;
}e[4*N];
void insert(int u,int v,int vol,int cost)
{
	e[num].to=v,e[num].vol=vol,e[num].cost=cost;
	e[num].next=head[u],head[u]=num++;
	
	e[num].to=u,e[num].vol=0,e[num].cost=-cost;//反向边 减少流量,则价格也减少  
    e[num].next=head[v];  
    head[v]=num++;  
}
int inq[N],dist[N],pre[N],path[N];
queue<int> q;
bool SPFA(int s,int t)
{
	while(!q.empty())
		q.pop();
	memset(pre,-1,sizeof(pre));
	memset(dist,0x7f,sizeof(dist));	
	memset(inq,0,sizeof(inq));
	inq[s]=1,dist[s]=0,q.push(s);
	while(!q.empty())
	{
		int u=q.front();
		q.pop(),inq[u]=0;
		for(int i=head[u];i!=-1;i=e[i].next)
		{
			int v=e[i].to;
			if(e[i].vol>0&&dist[v]>dist[u]+e[i].cost)
			{
				dist[v]=dist[u]+e[i].cost;
				pre[v]=u,path[v]=i;//前一个点和边 
				if(!inq[v])
					inq[v]=1,q.push(v);
			}
		}
	}
	if(pre[t]==-1)
		return false;
	return true;
}
int Min_CostFlow(int s,int t,int F)
{
	int cost=0,flow=0;	
	while(SPFA(s,t))
	{
		if(flow==F)// 
			break;
		int f=inf;
		for(int u=t;u!=s;u=pre[u])
			f=min(f,e[path[u]].vol);//path[u],u的前一条边 	
		flow+=f,cost+=dist[t]*f;	
		for(int u=t;u!=s;u=pre[u])  
        {  
            e[path[u]].vol-=f;  
            e[path[u]^1].vol+=f;//残余网络   
        }  
	}
	return cost;
}
int main()
{
	while(cin>>n>>m)
	{
		int u,v,w;
		num=0;
		memset(head,-1,sizeof(head));
		for(int i=0;i<m;i++)
		{
			scanf("%d%d%d",&u,&v,&w);
			insert(u,v,1,w);
			insert(v,u,1,w);			
		}
		int ans=Min_CostFlow(1,n,2); 
		cout<<ans<<endl;
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值