系列目录
算法是解决问题的核心。无论是排序、搜索,还是递归与动态规划,算法的选择和实现对程序的效率和性能有着重要影响。本节将介绍几种常见的算法,包括排序算法、搜索算法,以及递归和动态规划的应用。
排序算法
排序算法是将一组数据按特定顺序排列的过程。常见的排序算法有冒泡排序、选择排序、插入排序、快速排序和归并排序等。下面是几种常见排序算法的介绍和示例代码。
冒泡排序
冒泡排序通过多次遍历数组,每次比较相邻的元素,如果顺序错误就交换,直到整个数组有序,例如:
#include <stdio.h>
void bubbleSort(int arr[], int n) {
for (int i = 0; i < n-1; i++) {
for (int j = 0; j < n-i-1; j++) {
if (arr[j] > arr[j+1]) {
// 交换arr[j]和arr[j+1]
int temp = arr[j];
arr[j] = arr[j+1];
arr[j+1] = temp;
}
}
}
}
int main() {
int arr[] = {64, 34, 25, 12, 22, 11, 90};
int n = sizeof(arr)/sizeof(arr[0]);
bubbleSort(arr, n);
printf("排序后的数组: ");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
return 0;
}
选择排序
选择排序每次从未排序部分中选出最小(或最大)的元素,放到已排序部分的末尾,例如:
#include <stdio.h>
void selectionSort(int arr[], int n) {
for (int i = 0; i < n-1; i++) {
int minIndex = i;
for (int j = i+1; j < n; j++) {
if (arr[j] < arr[minIndex])
minIndex = j;
}
int temp = arr[minIndex];
arr[minIndex] = arr[i];
arr[i] = temp;
}
}
int main() {
int arr[] = {64, 25, 12, 22, 11};
int n = sizeof(arr)/sizeof(arr[0]);
selectionSort(arr, n);
printf("排序后的数组: ");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
return 0;
}
快速排序
快速排序通过选择一个基准元素,将数组分成两部分,一部分所有元素比基准元素小,另一部分所有元素比基准元素大,然后递归地对这两部分进行排序,例如:
#include <stdio.h>
void swap(int* a, int* b) {
int t = *a;
*a = *b;
*b = t;
}
int partition (int arr[], int low, int high) {
int pivot = arr[high];
int i = (low - 1);
for (int j = low; j <= high-1; j++) {
if (arr[j] < pivot) {
i++;
swap(&arr[i], &arr[j]);
}
}
swap(&arr[i + 1], &arr[high]);
return (i + 1);
}
void quickSort(int arr[], int low, int high) {
if (low < high) {
int pi = partition(arr, low, high);
quickSort(arr, low, pi - 1);
quickSort(arr, pi + 1, high);
}
}
int main() {
int arr[] = {10, 7, 8, 9, 1, 5};
int n = sizeof(arr)/sizeof(arr[0]);
quickSort(arr, 0, n-1);
printf("排序后的数组: ");
for (int i = 0; i < n; i++)
printf("%d ", arr[i]);
return 0;
}
搜索算法
搜索算法用于在数据集合中查找特定元素。常见的搜索算法有线性搜索和二分搜索。
线性搜索
线性搜索逐一比较数据集合中的每个元素,直到找到目标元素或搜索完所有元素,例如:
#include <stdio.h>
int linearSearch(int arr[], int n, int x) {
for (int i = 0; i < n; i++) {
if (arr[i] == x)
return i;
}
return -1;
}
int main() {
int arr[] = {2, 3, 4, 10, 40};
int x = 10;
int n = sizeof(arr)/sizeof(arr[0]);
int result = linearSearch(arr, n, x);
if(result == -1)
printf("元素不在数组中\n");
else
printf("元素在数组中的索引: %d\n", result);
return 0;
}
二分搜索
二分搜索在有序数组中查找目标元素,通过反复将搜索范围缩小为一半,直到找到目标元素或搜索范围为空,例如:
#include <stdio.h>
int binarySearch(int arr[], int l, int r, int x) {
while (l <= r) {
int m = l + (r - l) / 2;
if (arr[m] == x)
return m;
if (arr[m] < x)
l = m + 1;
else
r = m - 1;
}
return -1;
}
int main() {
int arr[] = {2, 3, 4, 10, 40};
int x = 10;
int n = sizeof(arr)/sizeof(arr[0]);
int result = binarySearch(arr, 0, n-1, x);
if(result == -1)
printf("元素不在数组中\n");
else
printf("元素在数组中的索引: %d\n", result);
return 0;
}
递归与动态规划
递归
是指一个函数调用其自身。递归算法通常用于解决分治问题,例如斐波那契数列和阶乘,例如:
#include <stdio.h>
int fibonacci(int n) {
if (n <= 1)
return n;
return fibonacci(n - 1) + fibonacci(n - 2);
}
int main() {
int n = 9;
printf("Fibonacci数列的第%d项是: %d\n", n, fibonacci(n));
return 0;
}
动态规划
是一种将复杂问题分解为更小子问题的技术,通过记忆化或表格化存储子问题的结果,避免重复计算,提升算法效率,例如:
#include <stdio.h>
int fibonacci(int n) {
int f[n+1];
f[0] = 0;
f[1] = 1;
for (int i = 2; i <= n; i++) {
f[i] = f[i-1] + f[i-2];
}
return f[n];
}
int main() {
int n = 9;
printf("Fibonacci数列的第%d项是: %d\n", n, fibonacci(n));
return 0;
}
总结
排序算法、搜索算法以及递归与动态规划是C语言编程中不可或缺的重要部分。通过掌握这些算法,将能够高效地处理和操作数据,解决复杂的编程问题。学习和理解这些基础算法,不仅有助于提升编程能力,也为解决实际问题打下坚实的基础。
下一篇:白骑士的C语言教学高级篇 3.5 性能优化