题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
思路:
首先可知,第一阶有只能一步,一种;
第二阶可以两次一步、一次两步两种;
当n = 3 时,有3种跳法;
当n很大时,青蛙在最后一步跳到第n级台阶时,有两种情况:
- 一种是青蛙在第n-1个台阶跳一个台阶,那么青蛙完成前面n-1个台阶,就有f(n-1)种跳法,这是一个子问题。
- 另一种是青蛙在第n-2个台阶跳两个台阶到第n个台阶,那么青蛙完成前面n-2个台阶,就有f(n-2)种情况,这又是另外一个子问题。
#暴力搜索
class Solution:
def jumpFloor(self, n):
if n==1:
return 1
if n==2:
return 2
elif n>2:
return self.jumpFloor(n-1)+self.jumpFloor(n-2)
动态规划
class Solution1:
def jumpFloor(self, number):
if number==1:
return 1
if number==2:
return 2
if number >2:
a1,a2 =1,2
a = 0
for i in range(2,number):
a= a1+a2
a1,a2 = a2,a
return a