题意:给两个自然数,stan先手,从两个数中较大的数里减去两个数中较小的数的任意正整数倍,如25 7 可以减7或14或21,得到下一组数,谁先减到0出现,谁就win。
分析:如果a%b==0.就是a是b的倍数,先手获胜。如果a>=2*b. 那么 那个人肯定知道a%b,b是必胜态还是必败态。
若是必败态,先手将a,b变成a%b,b,那么先手肯定赢。
若是必胜态,先手将a,b变成a%b+b,b.那么对手只有将这两个数变成a%b,b,先手获胜。
而当b<a<b*2时,大数减小数,调整使a>b,循环下去到小的值b为零,判断胜负
#include <iostream>
using namespace std;
int main()
{
int a,b;
while(cin>>a>>b&&(a+b))
{
int flag=0;
if(a<b)
swap(a,b);
while(b)
{
if(a%b==0||a>=2*b)
break;
a=a-b;
if(a<b)
swap(a,b);
flag=(flag>0?0:1);
}
if(flag==0)
cout<<"Stan wins"<<endl;
else cout<<"Ollie wins"<<endl;
}
return 0;
}