hdu 1525 Euclid's Game(博弈论找规律)

5 篇文章 0 订阅
3 篇文章 0 订阅

题意:给两个自然数,stan先手,从两个数中较大的数里减去两个数中较小的数的任意正整数倍,如25 7 可以减7或14或21,得到下一组数,谁先减到0出现,谁就win。

分析:如果a%b==0.就是a是b的倍数,先手获胜。如果a>=2*b.  那么 那个人肯定知道a%b,b是必胜态还是必败态。

若是必败态,先手将a,b变成a%b,b,那么先手肯定赢。

若是必胜态,先手将a,b变成a%b+b,b.那么对手只有将这两个数变成a%b,b,先手获胜。

而当b<a<b*2时,大数减小数,调整使a>b,循环下去到小的值b为零,判断胜负

#include <iostream>

using namespace std;

int main()
{
    int a,b;
    while(cin>>a>>b&&(a+b))
    {
        int flag=0;
        if(a<b)
            swap(a,b);
        while(b)
        {
            if(a%b==0||a>=2*b)
                break;
            a=a-b;
            if(a<b)
                swap(a,b);
                flag=(flag>0?0:1);
        }
        if(flag==0)
            cout<<"Stan wins"<<endl;
        else cout<<"Ollie wins"<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值