Generalizable Cross-modality Medical Image Segmentation via Style Augmentation and Dual Normalization
- 【2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)】
- 研究背景
1.深度卷积神经网络的使用,使得医学图像分割的准确性得到了很大的提升,但是在训练分割模型期间,训练(或标记)数据和测试(或未标记)数据之间的分布转移通常会导致严重的性能退化;
2.在对抗领域漂移的研究中,基于无监督域适应(unsupervised domain adaptation, UDA)的分割是最常用的一种,但是,这些UDA方法需要目标域能够被观察,甚至被允许接受训练,这一前提条件在实际应用中有时难以满足或不可行;
3.为了减轻UDA中对目标域的要求,本文考虑了域概化(DG),以实现针对域偏移的可泛化医学图像分割,但是大多数现有的DG模型仅在跨中心环境中表现良好,域之间的变化很小,而在大的域漂移(例如跨模态)上很少被研究,所以本文的研究是可行且具有挑战性的。 - 主要贡献:
1.本文提出了一个深度双归一化模型来解决更具挑战性的DG任务,即可推广的跨模态分割,可以直接从未见的目标域分割图像,而无需重新训练;
2.基于Bézier曲线,通过生成源相似图像和源不同图像来增强源域的多样性,并建立双归一化网络进行有效利用,并在测试阶段提出了基于风格的路径选择方案;
3.大量的实验证明了本文方法的有效性。在BraTS数据集上,本文的方法在T2和T1CE源域上分别实现了54.44%和57.98%的Dice,非常接近于UDA (T2源域上的59.30%)。在跨模式心脏和腹部多器官数据集上,本文的方法优于最先进的DG方法。
- 实验结果及分析:
1.基于风格的路径选择的有效性:证明了与源相似BN路径和源不相似BN路径相比,本文的方法具有更强的鲁棒性,并且在集合预测不能得到有希望结果的情况下,基于风格的路径选择可以帮助得到相对最优的结果;
2.风格增强的功效:在实验中观察到,无论变换函数的数量如何,本文方法的分割结果都大大超过了其他方法,并且证明了在合理范围内,变换函数的数量对方法的结果影响不大;
3.跨中心任务分析:虽然本文的方法在跨中心任务中并不优于其他方法,但是在跨中心任务中,领域之间的差距相对较小,本文的方法旨在解决具有较大域偏移的DG任务(例如跨模态任务),实验的结果也表明本文的方法在跨模态DG任务的三个数据集上显示出了巨大的优势。