论文阅读
文章平均质量分 51
Jerry576496858564
这个作者很懒,什么都没留下…
展开
-
面向连续超分的隐式扩散模型
Implicit Diffusion Models for Continuous Super-Resolution现存问题目前的超分(SR)方法通常存在过度平滑和伪影;大多数的SR方法大多数只能使用固定的放大倍数;基于GAN的模型可能会出现模式崩溃,并难以捕获复杂的数据分布,从而产生非自然的纹理;近年来,扩散概率模型(DM)已被用于图像合成,以提高SR图像的保真度,性能很好,但是,基于DM的方法仍然仅限于固定的放大倍数,一旦放大倍数发生变化,将导致输出损坏;解决问题本文开发了一个连续图像原创 2023-12-01 17:14:21 · 806 阅读 · 1 评论 -
内窥镜移动光纤束实现高分辨率成像
本文提出了一种新型的高分辨内窥镜,它采用了微型压电管扫描仪来诱导光纤束的精确微位移。纤维束在一个微型物镜后面扫描,不与样品直接接触,从而避免了摩擦和组织变形的问题。文中推导出了一个最优的光纤移动模式,并使用了基于快速Delaunay三角测量的p-SR算法从多个像素化有限的LR图像中恢复SR图像。在FOV为350µm的情况下,光纤在30 fps时实现了2倍的改进。原创 2023-11-24 16:01:53 · 519 阅读 · 1 评论 -
Honeycomb Artifact Removal Using Convolutional NeuralNetwork for Fiber Bundle Imaging
在光纤束的成像过程中,由于光线的传播特性,会出现蜂窝状的伪影,同时由于光纤传像束的物理结构及排列方式,蜂窝效应伪影将图像划分成一个个类圆区域。蜂窝效应伪影不仅使得图像细节变模糊,而且妨碍对图像中目标的分析,对后续的高级图像处理造成干扰,如图像拼接、目标检测等。原创 2023-11-17 15:48:25 · 188 阅读 · 0 评论 -
DPCNet
提出了空间-框架激励模块,采用空间特异性激励和框架特异性激励级联的方式(为了在全空间分辨率下突出表达特异性特征,我们设计了空间特异性激励);尽管LSTM用于学习空间框架特征之间的长期依赖关系,但它仍然将通道感知特征和时间信息视为对最终表达式识别的同等贡献;设计了一个通道-时间聚合模块(CTAM),通过对通道感知和时间感知特征进行元素加(尽管LSTM用于学习空间框架特征之间的长期依赖关系,但它仍然将通道感知特征和时间信息视为对最终表达式识别的同等贡献);原创 2023-07-14 14:55:07 · 57 阅读 · 0 评论 -
BoostMIS:用自适应伪标记和信息主动注释促进医学图像半监督学习
BoostMIS: Boosting Medical Image Semi-supervised Learningwith Adaptive Pseudo Labeling and Informative Active Annotation原创 2023-03-31 11:19:10 · 253 阅读 · 0 评论 -
基于风格增强和对偶归一化的可推广跨模态医学图像分割
Generalizable Cross-modality Medical Image Segmentation via StyleAugmentation and Dual Normalization原创 2023-03-24 11:01:36 · 129 阅读 · 0 评论 -
使用稀疏注释进行分割
Segmentation only uses sparse annotations: Unified weakly and semi-supervised learning in medical images原创 2023-03-15 14:14:35 · 126 阅读 · 0 评论 -
有效降维的分层最近邻图嵌入
Hierarchical Nearest Neighbor Graph Embedding for Efficient DimensionalityReduction原创 2023-03-06 15:33:24 · 91 阅读 · 0 评论 -
胃肠道疾病处理
Polyp detection on video colonoscopy using a hybrid 2D/3D CNN原创 2023-03-03 11:45:18 · 51 阅读 · 0 评论 -
自然腔道疾病处理
UC-NfNet: Deep learning-enabled assessment of ulcerative colitis fromcolonoscopy images原创 2023-02-23 21:49:34 · 52 阅读 · 0 评论 -
胃肠道影像分类
胃肠道影像分类Adaptive aggregation with self-attention network forgastrointestinal image classification原创 2023-02-17 14:48:27 · 76 阅读 · 0 评论